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Abstract. In this expository essay, we provide an account of the recent breakthrough of
Kelley and Meka on the size of subsets of {1, . . . , N} with no nontrivial three-term arithmetic
progressions. With an improvement by Bloom and Sisask, the size of such a set must be at
most N/exp(C(logN)1/9) for some constant C > 0. This upper bound matches the shape of
the size of the largest known such sets, up to the power of the logN term in the exponent. We
first discuss the corresponding problem over a finite field vector space, which provides all of
the key ideas, before presenting the details of the full proof over the integers. We organize the
arguments for both settings in the same manner as to draw attention to the parallels between
the two proofs.
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1. Introduction

In 1936, Erdős and Turán [ET36] posed a conjecture: every set of positive integers with pos-
itive upper density1 contains a nontrivial three-term arithmetic progression (3-AP)—that
is, a set of the form {x, x + d, x + 2d} with d 6= 0. In 1952, Roth [Rot52] proved this conjec-
ture, which is now known as Roth’s theorem. A qualitative equivalent is to consider subsets
of {1, . . . , N} for some integer N ≥ 1 and determine a density threshold for which a subset
must have a nontrivial three-term arithmetic progression. Let r3(N) denote the maximum size
of a subset of {1, . . . , N} with no nontrivial three-term arithmetic progressions. Then Roth’s
theorem states the following2.

Theorem 1.1 (Roth). We have that r3(N) = o(N).

A natural follow-up question is to ask for a more precise asymptotic on r3(N). The proof by
Roth [Rot53] using Fourier-analytic methods established a bound of r3(N) . N/log logN . Sze-
merédi (unpublished; presented in a seminar in 1985) improved this to r3(N) .c N/(log logN)c

for any c > 0; Balog optimised the approach to improve to r3(N) . N/exp(Ω((log logN)1/2)).
Heath-Brown [HB87] applied the circle method and large sieve from analytic number the-

ory to improve this to r3(N) . N/(logN)c for some effective constant c > 0; Szemerédi
[Sze90] demonstrated this with c = 1/4. Bourgain [Bou99] used Bohr sets to improve this to

r3(N) . N(log logN)O(1)/(logN)c for c = 1/2 and later to c = 2/3 [Bou08]; Sanders [San12a]
improved this to c = 3/4 and later c = 1 with an O(1) term of 6 [San11]. For c = 1, Bloom
[Blo16] reduced the exponent of the log logN term to 4; Schoen [Sch21] improved it further to
3 + o(1).

In 2020, Bloom and Sisask [BS20] broke the logarithmic barrier by proving an upper bound of
r3(N) . N/(logN)1+c for some effective constant c > 0. Their proof was a difficult adaptation
of the method used by Bateman and Katz [BK12] to prove a similar result over Fn3 for integers
n ≥ 1. This upper bound on r3(N) also implies that if the sum of the reciprocals of a subset
of the positive integers diverges, then the set contains infinitely many nontrivial three-term
arithmetic progressions. This provides the first nontrivial case of a conjecture of Erdős that
such sets contain arbitrarily long arithmetic progressions.

In a major breakthrough in 2023, Kelley and Meka [KM23] broke the quasi-polynomial barrier
in the upper bound by proving that r3(N) . N/exp(Ω((logN)c)) for c = 1/12. A few months
later, Bloom and Sisask [BS23a] increased this to c = 1/9 by improving one step of the Kelley–
Meka method, also claiming that c = 5/41 was doable with additional technical work.

Theorem 1.2. We have that

r3(N) ≤ N/exp(Ω((logN)c))

for c = 1/9.

It is also natural to ask how tight the bounds on r3(N) are, i.e. provide lower bounds. Salem

and Spencer [SS42] used a digital construction to prove that r3(N) &ε N/N (log 2+ε)/log logN for
any ε > 0. Behrend [Beh46] used the fact that spheres in any dimension avoid three-term

arithmetic progressions to improve the lower bound to r3(N) & N(logN)−1/4/exp(c
√

logN) for
c = 2

√
2 log 2 ≈ 2.35. Ever since Behrend’s construction in 1946, the lower bound has retained

the form of N/exp(O((logN)1/2)), with improvements coming only in lower-order terms. Elkin

[Elk11] used a thin annulus instead of a sphere to replace the (logN)−1/4 with a (logN)1/4.
Hunter [Hun24] applied techniques of Elsholtz, Proske, and Sauermann [EPS24] to improve the

lower bound to r3(N) &c N(logN)−1/exp(c
√

logN) for any c > 2
√

log(32/9) ≈ 2.25, in the
first quasi-polynomial improvement to Behrend’s construction.

The Kelley–Meka result thus provided the first upper bound that came in the same quasi-
polynomial shape as the Behrend lower bound, closing a significant amount of the gap between

1The upper density of a subset A of the positive integers is lim sup
N→∞

|A ∩ {1, . . . , N}|
N

.

2See Section 2.1.5 for asymptotic notation.
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the upper and lower bounds for r3(N). It is still an open problem to fully close the gap on the
power of the logN term in the exponent.

The Kelley–Meka argument utilises the density increment method of Roth, which is central to
many proofs of quantitative bounds for Roth’s theorem and other problems in extremal additive
combinatorics problems. The general idea is straightforward:

(1) Start by assuming that a set A has no nontrivial three-term arithmetic progressions.
(2) Then the number of three-term arithmetic progressions, which can be counted by a sum

of indicators, must be far from what a “random” set with the same density would have.
(3) With some control on the count, this leads to some large quantitative structure—for

example, in Roth’s original proof, this comes in the form of a large Fourier coefficient.
This is a case of what is often referred to as the dichotomy of structure versus
pseudorandomness [Tao07, Zha23] which prevails across many subfields of combina-
torics.

(4) Then this quantitative structure is used to exhibit some structured subset on which A
has sufficiently larger density. In vector spaces, such a subset would take the form of an
affine subspace (i.e. a coset of a subgroup).

(5) Finally, this passing to structured subsets is iterated until no longer possible, in which
case there must be many progressions. The number of iterations is controlled by the
size of the density increase, while the size of the original set A is controlled by the gap
to the subset that we pass to as well as the number of iterations.

For a clear example of this broken down in Roth’s original argument, see [Zha23, Chapter 6].
The details and quantitative bounds of the mechanisms in this method determine how effective
the final bounds on |A| are. For much of the history of this problem, most of the structural work
was done through Fourier-analytic techniques. One surprise of the novel Kelley–Meka method
is that the primary improvement comes on the physical side.

In this essay, we present the Bloom–Sisask simplification [BS23b] of the Kelley–Meka method
with the improvement to c = 1/9. In Section 2, we provide preliminaries for the method. In
Section 3, we present the argument as applied to Fnq for an odd prime q and integer n ≥ 1. Over
finite field vector spaces, the argument contains the same main ideas but is technically simpler.
Then in Section 4, we provide the full argument in the integer setting to prove Theorem 1.2. In
both Sections 3 and 4, we first provide an outline of the proof with statements of key lemmas
before proving each step thoroughly. In Section 5, we discuss several related problems which
have been tackled using similar techniques.

1.1. Acknowledgements. The author would like to thank W. T. Gowers for providing useful
guidance and discussion throughout the process of writing this essay, as well as suggesting the
topic. This essay was written in partial fulfillment of the requirements for the degree of Master
of Advanced Study in Mathematics at the University of Cambridge.
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2. Preliminaries

2.1. Notation. In this essay, G will refer to a finite abelian group of odd order3 with addition
as its group operation. There are only two types of groups G that will show up:

• G = Fnq for some odd prime q and integer n ≥ 1. In this case, it is useful to think of q
as fixed and n as growing to infinity.
• G = Z/NZ for some odd integer N ≥ 1. Again, it is useful to think of N as growing

to infinity. This N will not necessarily be the same as the N in the statement of
Theorem 1.2, but it will grow in the same manner.

Similarly, V will refer to a finite-dimensional vector space over Fq for some odd prime q. We
withhold from just writing Fnq because we will often change which dimension we are working in
by taking subspaces.

2.1.1. Sets. Let S be a finite set. The indicator function of S is defined by

1S(x) :=

{
1 if x ∈ S
0 otherwise.

For any function f whose domain contains S, let

E
x∈S

f(x) =
1

|S|
∑
x∈S

f(x).

For shorthand, let E be the functional that sends a function to its expectation over G, i.e.

E f = E
x∈G

f(x).

For A ⊆ G, the density of A is |A||G| . If A ⊆ B, the relative density of A (with respect to

B) is |A||B| . The normalised indicator function of A is µA := α−1
1A, where α is the density

of A. Note that

E
x∈A

f(x) = E
x∈G

µA(x)f(x)

for all f : G→ C.
For sets A and B, define

−A = {−a : a ∈ A}
A+B = {a+ b : a ∈ A, b ∈ B}
A−B = {a− b : a ∈ A, b ∈ B} .

For shorthand, let kA = A+ · · ·+A︸ ︷︷ ︸
k times

for a positive integer k. This is not to be confused with

k ·A = {ka : a ∈ A} ,

where ka = a+ · · ·+ a︸ ︷︷ ︸
k times

.

For a function f with codomain R, let {f > c} be shorthand for the set of values x in the
domain of f for which f(x) > c, and similarly with other inequalities.

2.1.2. Functions. We will be working with the Hilbert space of functions from G to C with
“normalised counting measure”. For f, g : G→ C, define the following:

• inner product:

〈f, g〉 := E
x∈G

f(x)g(x)

3Most results still hold when G is just a finite abelian group, but it will be easier to assume that no element
has order 2—otherwise three-term arithmetic progressions can behave unusually.
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• Lp-norm for p ≥ 1:

‖f‖p :=

(
E
x∈G
|f(x)|p

) 1
p

• convolution:

(f ∗ g)(x) := E
y∈G

f(y)g(x− y)

• cross-correlation4:

(f ? g)(x) := E
y∈G

f(y)g(x+ y)

We also define the L∞-norm in the usual way over a finite domain:

‖f‖∞ := max
x∈G
|f(x)| .

Then Lp-norms are monotonically increasing in p for p ∈ [1,∞] by convexity. Note that this
is the opposite direction as for Lp-norms over C, but is the same direction as over probability
spaces (which the normalised counting measure provides).

Note that 〈f, g〉 = (f ? g)(0). If f, g : G→ R, then we can drop all the conjugations.
It is straightforward to check that convolution is associative and commutative, but cross-

correlation is neither. For shorthand, let f∗k = f ∗ · · · ∗ f︸ ︷︷ ︸
k times

for any integer k ≥ 1.

For t ∈ G, let τt denote the translation operator by t, defined by τtf(x) = f(x+ t) for all
x ∈ G. Let N denote the negation operator, defined by N f(x) = f(−x) for all x ∈ G. Note
that N is an involution, and that inner products and norms are preserved under translation
and negation.

One can check the following for f, g, h : G→ C.

g ? f = N (f ? g)

f ? g = N f ∗ g = N (f ∗ N g)

f ∗ g = N f ? g = N (f ?N g)

(f ? g) ? h = f ∗ (g ? h)

f ? (g ? h) = (f ∗ g) ? h

(f ? g) ∗ h = f ? (g ∗ h)

〈f, g ? h〉 = 〈f ∗ g, h〉 = 〈f ? h, g〉
〈f, g ∗ h〉 = 〈g ? f, h〉 = 〈h ? f, g〉 .

As before, if f, g, h : G→ R, then we can drop all the conjugations.

2.1.3. Probability measures. We will also need to work with nonuniform measures on G. In a bit
of nonstandard notation, we say that µ : G→ R≥0 is a probability measure on G if Eµ = 1.
Then we can define the inner product and norm under this measure:

• µ-inner product:

〈f, g〉µ := E
x∈G

µ(x)f(x)g(x)

• Lp(µ)-norm:

‖f‖Lp(µ) :=

(
E
x∈G

µ(x) |f(x)|p
) 1

p

4Bloom and Sisask [BS23b] refer to this as the difference convolution and notate it as f ◦ g. The notation
we use here is the same as that of Kelley and Meka, which is borrowed from signal processing.
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Similarly, we have the L∞(µ)-norm:

‖f‖L∞(µ) := max
x∈suppµ

|f(x)| .

Again, the Lp(µ)-norms are monotonically increasing in p.
In an abuse of notation, for a set S ⊆ G, let µ(S) = ‖1S‖L1(µ) denote the density of S under

the weighting µ. This makes (G, 2G, µ) a probability triple in the standard measure-theoretic
sense. Note that µ({x}) 6= µ(x) as the former has the normalisation factor of 1

|G| .

Note that µS is a probability measure for any S ⊆ G, corresponding to the uniform dis-
tribution on S. Also, for any probability measures µ1 and µ2, the convolution µ1 ∗ µ2 and
cross-correlation µ1 ? µ2 are both also probability measures. These correspond to the distri-
butions of X1 + X2 and X2 − X1, respectively, where X1 ∼ µ1 and X2 ∼ µ2. In particular,
expressions such as (µB′′ ? µB′′) ∗ (µB′′′ ? µB′′′) for B′′, B′′′ ⊆ G are probability measures.

2.1.4. Dual group. We will also use the (Pontryagin) dual group of G, defined as

Ĝ := Hom(G,T) = {homomorphisms from G to T} ,

where T = {z ∈ C : |z| = 1} ∼= R /Z. Note that Ĝ has multiplication as its group operation.
We will write χ0 for the trivial character which evaluates to 1 on all of G. Then χ0 is the

identity element of Ĝ.

It is not difficult to show that G ∼= Ĝ for any finite abelian group G. In the groups that we
care about, the dual groups can be shown to be the following:

• Let G = Z/NZ. For r ∈ G, let χr(x) = ζrx, where ζ = e2πi/N . Then

Ĝ = {χr : r ∈ G} .

• More generally, this construction generalises for G = (Z/NZ)m (and thus Fnq ). For
r ∈ Gm, let χr(x) = ζr·x, where · denotes the standard dot product. Then

Ĝ = {χr : r ∈ Gm} .

In fact, by changing the root of unity, this generalises to all finite abelian groups upon
appealing to the structure theorem.

We will work with the Hilbert space of functions from Ĝ to C with (unnormalised) counting
measure, which means that expectations in the definitions of inner product, norm, convolution,
and cross-correlation are replaced by sums. Note that this means that Lp-norms are monoton-
ically decreasing instead.

2.1.5. Asymptotic notation. We use f . g, f = O(g), and g = Ω(f) to denote |f | ≤ Cg for
some constant C > 0. We use f = o(g) to denote that f/g → 0 as the argument tends to ∞.
Subscripts denote that the hidden constant may depend on these parameters. For example,
f = Oε(g) means that for every ε, we have that |f | ≤ Cεg for some constant Cε > 0.

2.2. Fourier transform. For a function f : G→ C, its Fourier transform f̂ : Ĝ→ C is given
by

f̂(χ) := 〈f, χ〉 = E
x∈G

f(x)χ(−x).

Note that the Fourier transform is a linear operator. The Fourier transform translates nicely
between multiplication, convolution, and cross-correlation.

Proposition 2.1. Let f, g : G→ C. Then f̂ ∗ g = f̂ · ĝ, f̂ ? g = f̂ · ĝ, and f̂ · g = f̂ ∗ ĝ.

Corollary 2.2. Let f : G→ C. Then:

• f̂ ∗ f = f̂2 and f̂ ? f = |f̂ |2; and

• f̂∗k = f̂k and f̂k = f̂∗k for any integer k ≥ 1.
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The Fourier transform also acts as the coefficients when expanding functions in the orthonor-

mal (up to uniform scaling) basis of characters χ ∈ Ĝ. This gives the following two fundamental
facts about the Fourier transform.

Proposition 2.3 (Fourier inversion). Let f : G→ C. Then

f =
∑
χ∈Ĝ

f̂(χ)χ.

Proposition 2.4 (Parseval). Let f, g : G→ C. Then

〈f, g〉 = 〈f̂ , ĝ〉.
In particular,

‖f‖2 = ‖f̂‖2.

Remark 2.5. Recall that the inner product, norm, and convolution over the dual group is
defined using the counting measure rather than the normalised counting measure, so for example

f̂ · g = f̂ ∗ ĝ means that

E
x∈G

f(x)g(x)χ(−x) =
∑
γ∈Ĝ

f̂(γ)ĝ(χ/γ).

Each of these facts can be proven by expanding and possibly applying the facts that

E
x∈G

χ(x) =

{
1 if χ = χ0

0 otherwise

and ∑
χ∈Ĝ

χ(x) =

{
|G| if x = 0

0 otherwise.

The Fourier inversion formula also allows us to cleanly read off how the Fourier transform
interacts with other operators. For example, for all x, t ∈ G, we have that

τtf(x) =
∑
χ∈Ĝ

f̂(χ)χ(x+ t) =
∑
χ∈Ĝ

χ(t)f̂(χ)χ(x),

so τ̂tf = χ(t)f̂ .

If a function has nonnegative Fourier transform everywhere on Ĝ, we say that it is spectrally
nonnegative.

For 0 < λ ≤ 1 and f : G→ C, the λ-large spectrum of f is

Specλ(f) :=
{
χ ∈ Ĝ : |f̂(χ)| ≥ λ ‖f‖1

}
.

Since translating a function by t multiplies its Fourier transform by χ(t), it follows that
Specλ(τtf) = Specλ(f) for all t ∈ G.

2.3. Bohr sets. For nonempty Γ ⊆ Ĝ and ρ > 0, define the Bohr set B = Bohr(Γ, ρ) to be

Bohr(Γ, ρ) := {x ∈ G : |1− χ(x)| ≤ ρ for all χ ∈ Γ} .
We call Γ the frequency set of B, rank(B) := |Γ| the rank of B, and radius(B) := ρ the
radius of B.5

Bohr sets are commonly used in additive combinatorics as a structured subset of an arbitrary
finite abelian group. In vector spaces, we have subspaces. But in groups such as Z/NZ, it
is possible to have very few subgroups. So we need some other notion of structure. The
original proof of Roth’s theorem used arithmetic progressions contained in {1, . . . , N}, which is
somewhat of a predecessor to the concept of Bohr sets in additive combinatorics. Bohr sets are

5Tao and Vu (and some other sources) define Bohr sets a bit differently by using the angle along the unit circle
rather than the distance. This affects the radius up to an irrelevant constant factor, so statements of results here
may appear different compared to other sources.
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not original to combinatorics; Harald Bohr6 used them in the early twentieth century to study
almost-periodic functions on R using Fourier analysis.

The following results are standard facts about Bohr sets and can be found in either the book
of Tao and Vu [TV06, Section 4.4] or the prior work of Bloom and Sisask [BS20, Section 4].

Remark 2.6. Bohr sets can be viewed as a generalization of subspaces. Indeed, if V ≤ Fnq ,
then V = Bohr(Γ, ρ), where:

• Γ is a set of characters that correspond to a basis of V ⊥ under an isomorphism between
V and its dual group; and
• ρ < 2 sin π

q .

Note that rank(V ) = codimV under this interpretation.

Since characters have magnitude 1, it is easy to verify that Bohr sets are symmetric. Similarly,
one can check that

Bohr(Γ, ρ1) + Bohr(Γ, ρ2) ⊆ Bohr(Γ, ρ1 + ρ2)

for all ρ1, ρ2 > 0. Slightly less obvious is that if k is a positive integer relatively prime to |G|
and B is a Bohr set, then k ·B is also a Bohr set of the same rank and radius—one can adjust
the frequency set accordingly.

For λ > 0, the dilate of a Bohr set B = Bohr(Γ, ρ) is

Bλ = Bohr(Γ, λρ).

Note that the Bλ are increasing in λ.
By a pigeonhole argument, one can establish that Bohr sets have considerable size.

Lemma 2.7. Let B ⊆ G be a Bohr set and 0 < λ ≤ 1. Then Bλ ⊆ B has relative density at
least (λ/4)rank(B). In particular, B has density at least (radius(B)/8)rank(B).

See [BS20, Lemma 4.4] for a full proof (also [TV06, Lemma 4.20] for the bound on the density
of B with the constant 8 replaced with 2π).

Bohr sets in general may exhibit bad additive structure, but it turns out that all Bohr sets
are somewhat close to one that has good structure. We say that a Bohr set B of rank r is
regular if

(1− 100r |κ|) |B| ≤ |B1+κ| ≤ (1 + 100r |κ|) |B|

for all − 1
100r ≤ κ ≤

1
100r . This essentially means that adding a small dilate of B to B does not

expand B by too much if B is regular.

Lemma 2.8. Let B ⊆ G be a Bohr set. There exists some 1
2 ≤ λ ≤ 1 so that Bλ is regular.

See [TV06, Lemma 4.25] for a full proof.
It is also straightforward to check that if B is a regular Bohr set, then k · B is also regular.

As one might expect, additional additive structure can be compelled of regular Bohr sets. The
following is an effective version of [BS20, Lemma 4.5].

Lemma 2.9. Let B ⊆ G be a regular Bohr set of rank r ≥ 1. Let µ be a probability measure
such that suppµ ⊆ Bλ for some 0 < λ < 1. Then

‖µB ∗ µ− µB‖1 ≤ 200λr.

Proof. If λ ≥ 1
100r , then

‖µB ∗ µ− µB‖1 ≤ ‖µB ∗ µ‖1 + ‖µB‖1 = 2 ≤ 200λr.

6Harald Bohr’s older brother Niels Bohr also lends his name to a notion of “Bohr radius” that is perhaps more
famous.
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Assume otherwise. We have that

‖µB ∗ µ− µB‖1 = E
x∈G

∣∣∣∣∣E
y∈G

µ(y)µB(x− y)− µB(x)

∣∣∣∣∣
≤ E

x∈G
E
y∈G

µ(y) |µB(x− y)− µB(x)|

=

∥∥∥∥∥E
x∈G
|µB(x− · )− µB(x)|

∥∥∥∥∥
L1(µ)

=

∥∥∥∥∥E
x∈G
|µB(x− · )− µB(x)|

∥∥∥∥∥
L∞(µ)

.

Observe that

E
x∈G
|µB(x− · )− µB(x)| = 1

|B|
∑
x∈G
|1B(x− y)− 1B(x)| = |(B + y) \B|+ |B \ (B + y)|

|B|
.

Let y ∈ suppµ ⊆ Bλ. Then B + y ⊆ B +Bλ ⊆ B1+λ, so by regularity, we have that

|(B + y) \B| ≤ |B1+λ \B| = |B1+λ| − |B|
reg.
≤ 100rλ |B| .

Similarly, B1−λ − y ⊆ B1−λ +Bλ ⊆ B, so

|B \ (B + y)| ≤ |B \B1−λ| = |B| − |B1−λ|
reg.
≤ 100rλ |B| .

The conclusion follows. �

One can use this additive structure to produce good translated structure when looking at any
sets. The following is a “narrowing” trick due to Bourgain, as stated in [BS20, Lemma 12.1].

Lemma 2.10. Let 0 < ε < 1. Let B be a regular Bohr set of rank r ≥ 1, and let A ⊆ B have
relative density α > 0. Let B1, B2 ⊆ Bλ for some 0 < λ ≤ εα

800r . Then one of the following
alternatives must hold:

(1) There exists d ∈ B such that

|(d−A) ∩B1|
|B1|

≥ (1 + 1
2ε)α or

|(d−A) ∩B2|
|B2|

≥ (1 + 1
2ε)α.

(2) There exists d ∈ B such that

|(d−A) ∩B1|
|B1|

≥ (1− ε)α and
|(d−A) ∩B2|

|B2|
≥ (1− ε)α.

Proof. Let B have density β > 0. Note that for d ∈ G, we have that

(µA ∗ µB1)(d) = E
y∈G

µA(d− y)µB1(y) = (αβ)−1 |(d−A) ∩B1|
|B1|

and likewise with B2.
Using the symmetry of B, we have that

|〈µA ∗ µB1 − µA, µB〉| = |(µA ∗ µB1 ∗ µB − µA ∗ µB)(0)|
= |〈µA, µB1 ∗ µB − µB〉|
Hölder
≤ ‖µA‖∞ ‖µB ∗ µB1 − µB‖1

Lem. 2.9
≤ (αβ)−1 · 200λr

≤ 1
4εβ
−1.
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The same result holds for B2. But 〈µA, µB〉 = ‖µB‖L1(µA) = β−1, so

‖µA ∗ µB1 + µA ∗ µB2‖L∞(µB) ≥ ‖µA ∗ µB1 + µA ∗ µB2‖L1(µB)

= 〈µA ∗ µB1 , µB〉+ 〈µA ∗ µB2 , µB〉
≥ (2− 1

2ε)β
−1.

Thus there exists some d ∈ B for which (µA ∗ µB1)(d) + (µA ∗ µB2)(d) ≥ (2− 1
2ε)β

−1.
Suppose that the first alternative fails. Then

(µA ∗ µB1)(d) ≥ (2− 1
2ε)β

−1 − (µA ∗ µB2)(d)

> (2− 1
2ε)β

−1 − (1 + 1
2ε)β

−1

= (1− ε)β−1

and similarly with B2, as desired. �

The following is essentially the same as [BS20, Lemma 4.6].

Lemma 2.11. Let B ⊆ G be a regular Bohr set of rank r ≥ 1, k ≥ 1 be an integer, and
0 < λ ≤ 1

100kr . If µ is a probability measure such that suppµ ⊆ kBλ, then

µB(x) ≤ 2(µB1+kλ
∗ µ)(x)

for all x ∈ G.

Proof. If x ∈ B and y ∈ suppµ ⊆ kBλ, then x − y ∈ B + kBλ ⊆ B1+kλ. It follows that for all
x ∈ B, we have that

(µB1+kλ
∗ µ)(x) = E

y∈G
µ(y) · |G|

|B1+kλ|
=

|G|
|B1+kλ|

reg.
≥ |G|

2 |B|
= µB(x).

For x /∈ B, the result is trivial. �
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3. Finite field model

In many problems in additive combinatorics over the integers, the corresponding problem
over a finite field vector space is often considerably easier to tackle. For example, the original
proof of Roth’s theorem was adapted by Meshulam [Mes95] to prove a similar result over Fnq
where q is an odd prime and n ≥ 1 is an integer.

In an abuse of notation, let r3(Fnq ) denote the maximum size of a subset of Fnq with no
nontrivial three-term arithmetic progressions. Meshulam proved that r3(Fnq ) . qn/n. The
Fourier-analytic proof that Meshulam used is quite straightforward compared to Roth’s proof
over the integers. The primary reason for this is that the strategy involves passing to a highly
structured subset of the original ambient set. Over Fnq , we have a tremendous subspace structure
which works perfectly for the argument. Over the integers, we don’t quite have anything as
nice.

As a result, it is useful to test out methods in this finite field vector space setting before
applying them in the integer setting. This is the finite field model. This strategy is expanded
upon in great detail in the surveys of Green [Gre05], Wolf [Wol15], and Peluse [Pel23]. For
the problem at hand, the finite field model has already been quite successful. Bateman and
Katz [BK12] broke the logarithmic barrier over Fn3 by proving that r3(Fn3 ) . 3n/n1+c for some
effective constant c > 0. Following this, some ideas from their method were used by Schoen
[Sch21] to prove that r3(N) . N(log logN)3+o(1)/logN . Then, Bloom and Sisask [BS20] fully
adapted the method to break the logarithmic barrier over the integers.

The corresponding result that the Kelley–Meka method achieves in the finite field model is
the following:

Theorem 3.1. We have that
r3(Fnq ) ≤ qn/exp(Ω(nc))

for c = 1/7.

The original Kelley–Meka argument gave c = 1/9, while this c = 1/7 version is due to
the Bloom–Sisask improvement. Note that for fixed primes q, this is the same shape as in
Theorem 1.2 since N is replaced by qn and logN is replaced by n.

We note that in the finite field model, the current best upper bound is much stronger than
the quasi-polynomial shape given by the Kelley–Meka method. Indeed, Ellenberg and Gijswijt
[EG17] used the polynomial method as prescribed in the breakthrough of Croot, Lev, and Pach
[CLP17] to prove that for sufficiently large primes q, r3(Fnq ) ≤ (cq)n for c ≈ 0.85.

For lower bounds in the finite field model, a variant of the Salem–Spencer [SS42] or Behrend

[Beh46] construction gives that r3(Fnq ) ≥ (cq)n−o(n) for c = 1/2. Recent work by Elsholtz,

Proske, and Sauermann [EPS24] improved this lower bound to c =
√

7/24. For fixed primes q,
more improvement can be made by constructing suitable sets in fixed dimension and extending
these sets to higher dimensions; the current best lower bound of r3(Fn3 ) ≥ 2.2202n by Romera-
Paredes et al. [RPBN+24] applies large language models (FunSearch) to improve the search for
such constructions.

So to summarise, we have the following for sufficiently large primes q:

(0.54q)n︸ ︷︷ ︸
EPS

. r3(Fnq ) . (0.85q)n︸ ︷︷ ︸
EG

(CLP method)

. qn/exp(Ω(n1/7))︸ ︷︷ ︸
BS

(KM method)

. qn/n︸ ︷︷ ︸
Meshulam

;

and the following for q = 3:

(2.22)n︸ ︷︷ ︸
FunSearch

. r3(Fn3 ) . (2.76)n︸ ︷︷ ︸
EG

(CLP method)

. 3n/exp(Ω(n1/7))︸ ︷︷ ︸
BS

(KM method)

. 3n/n︸ ︷︷ ︸
Meshulam

.

In order to prove the extremal result of Theorem 3.1, it suffices to prove a counting result.

Theorem 3.2. Let A ⊆ Fnq have density α > 0. Then

#{3-APs in A} ≥ q2n−O((1+logα−1)7).
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Remark 3.3. Such a counting result is akin to supersaturation results in extremal graph
theory which produce a large number of some structure once the threshold for existence of this
structure has been passed. However, it is often the case that graph theoretical supersaturation
results are proven separately from extremal results, while here we will prove the extremal result
using the counting result.

3.1. Outline. The rough idea of the density increment used in the Kelley–Meka method is as
follows:

(1) Start with a large deviation from the expected number of progressions, assuming a
random set of density α. Use Hölder’s inequality to lift to a large value of µA ? µA − 1
(on average).

(2) Then, “unbalance” the function to get a large value of µA ? µA (on average).
(3) Apply dependent random choice (a probabilistic technique to find large structured sub-

sets) to correlate µA ? µA with µA1 ? µA2 for some smaller pieces A1, A2.
(4) Apply almost-periodicity to convert this correlation to a density increment.

With the right bounds on each step, iterating this density increment would provide the Kelley–
Meka result.

Remark 3.4. To count the number of progressions, we can use 〈µA ∗ µA, µ2·A〉. This is because

〈µA ∗ µA, µ2·A〉 = α−3 E
x∈G
E
y∈G

1A(y)1A(x− y)12·A(x)

= α−3 1

|G|2
∑
x∈2·A

#{a, a′ ∈ A : a+ a′ = x}

= α−3 #{3-APs in A}
|G|2

.

Remark 3.5. To measure the size of the density increment to a subspace U ≤ V , we can use
‖µA ∗ µU‖∞. Indeed, suppose that ‖µA ∗ µU‖∞ ≥ 1 + ε for some ε > 0. Let t ∈ V be such that
µA ∗ µU (t) ≥ 1 + ε. Then

|A ∩ (t− U)|
|U |

=
1

|U |
∑
y∈V

1A(y)1U (t− y) ≥ (1 + ε)α.

But shifting by t and replacing U by −U (since U is a subspace) provides the desired density
increment: the set ((A− t) ∩ U) ⊆ U has relative density at least (1 + ε)α.

We now provide an outline of the proof, with statements of the key steps. The sequence of
steps roughly follows Bloom and Sisask [BS23b].

Step 1: Lifting. The first step allows us to go from a far-from-random progression count to a
large discrepancy between µA ? µA and its expectation. Note that a random set A of density α
should have #{3-APs in A} ≈ α3 |G|2 and thus 〈µA ∗ µA, µ2·A〉 ≈ 1.

Lemma 3.6. Let A ⊆ G have density α > 0. Suppose that

〈µA ∗ µA, µ2·A〉 ≤ 1− ε

for some 0 < ε < 1. Then

‖µA ? µA − 1‖p ≥
1
2ε

for some p = O(1 + logα−1).

Step 2: Unbalancing. We now have an estimate that µA?µA−1 must be large (on average). It
makes more sense to analyse the more symmetric µA?µA. Intuitively, the estimate on µA?µA−1
suggests that µA ?µA ought to be far from 1. But which direction is not immediately clear—for
example, the function −1 is far from 0, but adding 1 results in the 0 function. So we want some
kind of “unbalancing” move that results in µA ? µA being large.
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Lemma 3.7. Let A ⊆ G. Suppose that

‖µA ? µA − 1‖p ≥ ε

for some 0 < ε < 1 and p ≥ 1. Then

‖µA ? µA‖p′ ≥ 1 + 1
2ε

for some p′ = Oε(p).

Step 3: Correlation via dependent random choice. With a large average µA ? µA, we
begin working towards the required density increment by essentially correlating µA ? µA with
µA1 ? µA2 for some much smaller sets A1, A2.

Lemma 3.8. Let A ⊆ G have density α > 0. Suppose that

‖µA ? µA‖p ≥ 1 + ε

for some 0 < ε < 1 and integer p ≥ 1. Then there exist A1, A2 ⊆ G of density Ω(α2p+Oε(1))
such that

〈µA1 ? µA2 ,1S〉 ≥ 1− 1
8ε,

where S = {µA ? µA > 1 + 1
2ε}.

The proof of this step involves the technique of dependent random choice, where the
sets A1, A2 are chosen randomly but with some guidance. This idea stems from several similar
arguments often phrased in terms of graphs and common neighbours—see [FS11] for a survey
of typical applications. The main motivation for this step, original to the Kelley–Meka method,
is to feed into the following almost-periodicity step which has been crucial in recent progress
on other additive combinatorics problems.

Remark 3.9. The conclusion of Lemma 3.8 can also be stated as (µA1 ? µA2)(S) ≥ 1 − 1
8ε

(viewing µA1 ? µA2 as a probability measure). This allows us to interpret the result as that the
x ∈ G for which µA ? µA is large collectively have many representations of the form a2 − a1 for
a1 ∈ A1, a2 ∈ A2.

Step 4: Density increment via almost-periodicity. Several almost-periodicity results
have been heavily used to improve bounds on related problems in additive combinatorics ever
since Croot and Sisask [CS10] introduced the idea. We can use an almost-periodicity result due
to Schoen and Sisask [SS16] alongside an improved “bootstrapping” argument due to Bloom
and Sisask [BS23a] to establish a density increment. Since we wish to pass to subspaces, we
have to be more specific and say that our group G is a vector space now.

Lemma 3.10. Let V be a finite-dimensional vector space over a field of prime order. Let
A,A1, A2, S ⊆ V such that A,A1, A2 have densities α, α1, α2 > 0, respectively. Suppose that

〈µA1 ? µA2 ,1S〉 ≥ 1− ε

for some 0 < ε < 1/8, where S ⊆ {µA ? µA ≥ 1 + 4ε}. Then there exists a subspace U ≤ V of
codimension

Oε((1 + logα−1)2(1 + logα−1
1 )(1 + logα−1

2 ))

such that

‖µA ∗ µU‖∞ ≥ 1 + 1
2ε.

The original version of this density increment by Kelley and Meka instead exhibited a sub-
space of codimension Oε((1+logα−1

1 )3(1+logα−1
2 )) by directly applying the almost-periodicity

result without further adjustment. The α1, α2 produced from the previous three steps will sat-
isfy logα−1

i = Oε((1 + logα−1)2), so the original version gives a codimension bound of order
(1 + logα−1)8, while this improved version gives a codimension bound of order (1 + logα−1)6.
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Iterate. We can chain together the four steps into a density increment from the progression
count.

Proposition 3.11. Let V be a finite-dimensional vector space over a field of prime order. Let
A ⊆ V have density α > 0. Suppose that

#{3-APs in A} ≤ 1
2α

3 |V |2 .
Then there exist a subspace U ≤ V of codimension O((1 + logα−1)6) and a t ∈ V such that

|(A− t) ∩ U |
|U |

≥ 129
128α.

This proposition is ready to be iterated. As a sketch, the idea is to start with V and apply this
proposition repeatedly to generate a sequence of subspaces. After O(logα−1) steps, this must
stop since density is bounded by 1. At this point, we must have many 3-APs. The codimension
bound gives us an idea of how far we have strayed from V , so we can analyze this final state to
deduce the desired count. We provide a full proof in Section 3.3.

3.2. Proof of density increment steps. We now prove the steps in the density increment
for the finite field model.

Step 1: Lifting. To prove Lemma 3.6, we need the following simple Fourier estimate.

Lemma 3.12. Let f : G→ R and p ≥ 1 be an even integer. Then∥∥f ∗ f − (E f)2
∥∥
p
≤
∥∥f ? f − (E f)2

∥∥
p
.

Proof. Let g := f ∗ f − (E f)2. Since p is even, we have that

‖g‖pp = E gp = ĝp(0) = ĝ∗p(0).

Similarly, with h := f ? f − (E f)2, we have that ‖h‖pp = ĥ∗p(0). But

ĝ = f̂ ∗ f − (E f)2
1{χ0} = f̂2

1
Ĝ\{χ0}

and similarly ĥ = |f̂ |2 1
Ĝ\{χ0}, so ĥ = |ĝ| and the result follows from the triangle inequality. �

Proof of Lemma 3.6. Let p = 2 + 2blogα−1c. Then

ε ≤ |〈µA ∗ µA, µ2·A〉 − 1|
= |〈µA ∗ µA − 1, µ2·A〉|
Hölder
≤ ‖µA ∗ µA − 1‖p ‖µ2·A‖p∗ ,

where 1
p + 1

p∗ = 1. But

‖µ2·A‖p∗ = α−1 (E12·A)1/p∗ = α−1/p,

so
‖µA ∗ µA − 1‖p ≥ εα

1/p > 1
2ε

by the choice of p. The result follows from Lemma 3.12 applied to µA. �

Step 2: Unbalancing. It will be helpful in the integer setting to have the following generali-
sation of the lemma, from which Lemma 3.7 follows by taking f = µA ? µA − 1 and ν to be the
uniform measure.

Lemma 3.13. Let f : G → R be spectrally nonnegative, and let ν be a spectrally nonnegative
probability measure on G. Suppose that

‖f‖Lp(ν) ≥ ε
for some 0 < ε < 1 and p ≥ 1. Then

‖f + 1‖Lp′ (ν) ≥ 1 + 1
2ε

for some p′ = Oε(p).
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Remark 3.14. The lemma is false upon removing the spectral nonnegativity conditions (e.g.
with f ≡ −1). The choice f = µA ? µA − 1 is valid because

f̂ = ̂µA ? µA − 1{χ0} = |µ̂A|2 1Ĝ\{χ0} ≥ 0.

The first step to prove the strengthened lemma is to see that if p is odd, then fp should be
somewhat correlated with the event that f ≥ cε for 0 < c < 1.

Lemma 3.15. Let f : G → R be spectrally nonnegative, and let ν be a spectrally nonnegative
probability measure on G. Suppose that

‖f‖Lp(ν) ≥ ε

for some 0 < ε < 1 and odd integer p ≥ 1. Then for any 0 < c < 1,〈
1{f≥cε}, f

p
〉
ν
≥ (1

2 − c
p)εp.

Proof. It suffices to check correlation with f > 0 and with 0 < f < cε. Observe that〈
1{f>0}, f

p
〉
ν

= E
[
ν 1{f>0} f

p
]

= E
[
ν · f

p + |f | fp−1

2

]
=

1

2
E [νfp] +

1

2
E [ν |f |p]

=
1

2
ν̂fp(0) +

1

2
‖f‖pLp(ν)

=
1

2
ν̂ ∗ f̂∗p(0) +

1

2
‖f‖pLp(ν)

≥ 0 +
1

2
εp

and 〈
1{0<f<cε}, f

p
〉
ν

= E
[
ν 1{0<f<cε} f

p
]

≤ ν({0 < f < cε})(cε)p

≤ (cε)p,

so subtracting the two bounds finishes. �

But this correlation is controlled by the average of these objects, which can be unbalanced.
A little bit of bounding allows us to finish.

Proof of Lemma 3.13. If ‖f + 1‖L2p(ν) ≥ 1 + 1
2ε, then we are done with p′ = 2p. Assume

otherwise.
Since Lp-norms are monotonically increasing in p, without loss of generality we can round

p up to an odd integer at least 3. Let c = 0.51 and p′ = 1000ε−1(1 + log ε−1)p. Consider the
following three estimates:

(1) Cauchy–Schwarz: 〈
1{f≥cε}, f

p
〉
ν
≤
∥∥1{f≥cε}∥∥L2(ν)

‖fp‖L2(ν)

= ν({f ≥ cε})1/2 ‖f‖p
L2p(ν)

(2) Triangle inequality:

‖f‖L2p(ν) ≤ 1 + ‖f + 1‖L2p(ν)

< 2 + 1
2ε
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(3) Markov’s inequality:

ν({f ≥ cε}) ≤ ν({|f + 1|p
′
≥ (1 + cε)p

′})

≤
‖f + 1‖p

′

Lp′ (ν)

(1 + cε)p′

Combining all three bounds along with Lemma 3.15 gives that

(1
2 − c

p)εp ≤
〈
1{f≥cε}, f

p
〉
ν
≤

(
‖f + 1‖Lp′ (ν)

1 + cε

) p′
2

(2 + 1
2ε)

p.

With the choices of c and p′ above, it follows that ‖f + 1‖Lp′ (ν) ≥ 1 + 1
2ε. �

Remark 3.16. Though we required both f and ν to both be spectrally nonnegative, the only
Fourier-side condition used is that ν̂ ∗ f̂∗p(0) ≥ 0.

Step 3: Correlation. Again, it will be helpful in the integer setting to have the following
strengthened version of the lemma, from which Lemma 3.8 follows by taking B1 = B2 = G

(in which case µ is the uniform measure), replacing ε with ε/3
1+ε and δ with 1

8ε, and loosening

the constraint in S to the desired size (which does not affect the conclusion as the final inner
product can only increase upon expanding S).

Lemma 3.17. Let 0 < ε, δ < 1 and p ≥ 1 be an integer. Let A ⊆ G have density α > 0 and
B1, B2 ⊆ G be nonempty. Set µ = µB1 ? µB2. Suppose that ‖µA ? µA‖Lp(µ) > 0. Then there

exist A1 ⊆ B1 and A2 ⊆ B2 of relative density Ω((α ‖µA ? µA‖Lp(µ))
2p+Oε,δ(1)) such that

〈µA1 ? µA2 ,1S〉 ≥ 1− δ,

where S = {µA ? µA > (1− ε) ‖µA ? µA‖Lp(µ)}.

Since

〈µA1 ? µA2 , 1〉 = E [µA1 ? µA2 ] = 1,

it suffices to find appropriate A1, A2 such that

〈1A1 ?1A2 ,1Sc〉 ≤ δα1α2,

where Sc is the complement of S ⊆ G and α1, α2 are the densities of A1, A2, respectively.
The key idea is to apply dependent random choice: randomly choose some intersection of

Bi with several translates of A. To formalise this argument, for s = (s1, . . . , sp) ∈ Gp, let
Ai(s) = Bi ∩ (A+ s1)∩ · · · ∩ (A+ sp) for i = 1, 2. Let αi(s) and βi denote the densities of Ai(s)
and Bi, respectively. We record a straightforward calculation.

Lemma 3.18. Let f : G→ R. Then

E
s∈Gp

〈
1A1(s) ?1A2(s), f

〉
= β1β2 E

x∈G
µ(x)(1A ?1A)(x)pf(x).

Proof. We have that

E
s∈Gp

〈
1A1(s) ?1A2(s), f

〉
= E

s∈Gp
E
x∈G
E
y∈G

1A1(s)(y)1A2(s)(x+ y)f(x)

z=x+y
= E

s∈Gp
E
z∈G
E
y∈G

1A1(s)(y)1A2(s)(z)f(z − y).
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For fixed y, z ∈ G, we have that

E
s∈Gp

1A1(s)(y)1A2(s)(z) = 1B1(y)1B2(z) E
s1,...,sp∈G

p∏
j=1

1A+sj (y)1A+sj (z)

= 1B1(y)1B2(z)

(
E
t∈G

1A+t(y)1A+t(z)

)p
u=y−t

= 1B1(y)1B2(z)

(
E
u∈G

1A(u)1A(u+ z − y)

)p
= 1B1(y)1B2(z)(1A ?1A)(z − y)p.

Plugging this in gives that

E
s∈Gp

〈
1A1(s) ?1A2(s), f

〉
= E

y∈G
E
z∈G

1B1(y)1B2(z)(1A ?1A)(z − y)pf(z − y)

x=z−y
= β1β2 E

x∈G
E
y∈G

µB1(y)µB2(x+ y)(1A ?1A)(x)pf(x)

= β1β2 E
x∈G

µ(x)(1A ?1A)(x)pf(x)

as desired. �

It is clear that we want to apply this fact to f = 1Sc . It turns out that f ≡ 1 also provides
useful information.

Corollary 3.19. We have that

E
s∈Gp

〈
1A1(s) ?1A2(s),1Sc

〉
≤ (1− ε)p E

s∈Gp
α1(s)α2(s)

and

E
s∈Gp

α1(s)α2(s) = β1β2 ‖1A ?1A‖pLp(µ) .

Proof. Apply Lemma 3.18 to f = 1Sc to get that

E
s∈Gp

〈
1A1(s) ?1A2(s),1Sc

〉
= β1β2 E

x∈G
µ(x)(1A ?1A)(x)p 1Sc(x).

But Sc = {1A ?1A ≤ (1− ε) ‖1A ?1A‖Lp(µ)}, so we have the bound

E
x∈G

µ(x)(1A ?1A)(x)p 1Sc(x) ≤ µ(Sc)(1− ε)p ‖1A ?1A‖pLp(µ)

≤ (1− ε)p ‖1A ?1A‖pLp(µ) .

Apply Lemma 3.18 to f ≡ 1 to get that

E
s∈Gp

〈
1A1(s) ?1A2(s), 1

〉
= β1β2 E

x∈G
µ(x)(1A ?1A)(x)p

= β1β2 ‖1A ?1A‖pLp(µ) .

But

E
s∈Gp

〈
1A1(s) ?1A2(s), 1

〉
= E

s∈Gp
α1(s)α2(s)

〈
µA1(s) ? µA2(s), 1

〉
= E

s∈Gp
α1(s)α2(s),

so chaining these together gives the desired result. �
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At this point, we would like to use the probabilistic method to say that we are done—that is,
we have found some s for which 〈1A1 ?1A2 ,1Sc〉 ≤ (1− ε)pα1α2, and we just need p to be large
enough (which we can do by monotonicity of Lp-norms). But recall that we also had another
aim of keeping the sizes of A1 and A2 large enough. To do that, we can tack on an extra factor

of 1{α1α2≥Dβ1β2} for some D > 0, so that both |Ai||Bi| are at least D. But we have to keep the sum

large, so we must control the amount that we lose when we throw away the small α1α2.

Lemma 3.20. Let D > 0. Then

E
s∈Gp

α1(s)α2(s)1{α1α2<Dβ1β2} < D1/2β1β2α
p.

Proof. By size bounding and the Cauchy–Schwarz inequality, we have that

E
s∈Gp

α1(s)α2(s)1{α1α2<Dβ1β2} ≤ D
1/2β

1/2
1 β

1/2
2 E

s∈Gp
α1(s)1/2α2(s)1/2

CS
≤ D1/2β

1/2
1 β

1/2
2

(
E
s∈Gp

α1(s)

) 1
2
(
E
s∈Gp

α2(s)

) 1
2

.

A similar calculation to the proof of Lemma 3.18 gives that

E
s∈Gp

αi(s) = E
s∈Gp

E
x∈G

1Ai(s)(x) = E
x∈G

1Bi(x)

(
E
t∈G

1A+t(x)

)p
= βiα

p,

so

E
s∈Gp

α1(s)α2(s)1{α1α2<Dβ1β2} ≤ D
1/2β1β2α

p.

In order for equality to hold, both sides of the very first inequality would have to be 0—if

α1α2 > 0, then either α1α2 ≥ Dβ1β2 or D1/2β
1/2
1 β

1/2
2 α

1/2
1 α

1/2
2 > α1α2. So then the final upper

bound would have to be 0, which it is not. So equality cannot hold. �

We can now tie everything together.

Proof of Lemma 3.17. Let p′ = p+ dε log δ−1e and D = 0.01α−2p′ ‖1A ?1A‖2p
′

Lp′ (µ)
6= 0. We have

that

E
s∈Gp′

α1(s)α2(s)1{α1α2<Dβ1β2}
Lem. 3.20
< 0.1β1β2 ‖1A ?1A‖p

′

Lp′ (µ)

Cor. 3.19
= 0.1 E

s∈Gp′
α1(s)α2(s),

so

E
s∈Gp′

α1(s)α2(s)1{α1α2≥Dβ1β2} > 0.9 E
s∈Gp′

α1(s)α2(s)

Cor. 3.19
≥ 0.9(1− ε)−p′ E

s∈Gp′

〈
1A1(s) ?1A2(s),1Sc

〉
.

By the probabilistic method, there exists some s for which

α1α2 1{α1α2≥Dβ1β2} > 0.9(1− ε)−p′ 〈1A1 ?1A2 ,1Sc〉 .
Since the right-hand side is (termwise) nonnegative, the left-hand side must be positive, so

α1α2 ≥ Dβ1β2. Thus

|Ai|
|Bi|

≥ |A1| |A2|
|B1| |B2|

=
α1α2

β1β2

≥ D = 0.01(α ‖µA ? µA‖Lp′ (µ))
2p′

≥ 0.01(α ‖µA ? µA‖Lp(µ))
2p+Oε,δ(1).
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Furthermore, since p′ > log(0.9δ)/ log(1− ε), the bound on the inner product becomes

α1α2 > δ−1 〈1A1 ?1A2 ,1Sc〉 ,

which gives the desired bound on 〈µA1 ? µA2 ,1S〉 upon rearranging. �

Step 4: Density increment. We will use the following L∞-almost-periodicity result, which
is essentially the same as a statement of Schoen and Sisask [SS16, Theorem 3.2] and is a special
case of the result we will use for the integer case.

Proposition 3.21. Let 0 < ε < 1 and k ≥ 2 be an integer. Let A1, A2, S ⊆ G be such that
A1, A2 have density α1, α2 > 0, respectively. Then there exists a set T ⊆ G of density at least

exp(−Oε(k2(1 + logα−1
1 )(1 + logα−1

2 )))

such that

‖µ∗kT ∗ (µA1 ? µA2) ∗ 1S −(µA1 ? µA2) ∗ 1S‖∞ ≤ ε.

We defer the proof of this result to Appendix A.
This result alone is enough to give Kelley and Meka’s original result with c = 1/9. The

improvement of Bloom and Sisask was to improve the “bootstrap” procedure in which a µU
factor for some subspace U is introduced in place of the µ∗kT factor. This would give us the
structure that we want. In order to do this, we must take advantage of the structure of S as
given to us in the result of Step 3; note that the almost-periodicity result alone assumes no
structure on S.

Proof of Lemma 3.10. Apply Proposition 3.21 with k = 2 + 2dlog ε−1e + 2dlogα−1e, G = V ,
and S replaced by −S to produce a set of almost-periods T . Let

U =
{
x ∈ V : χ(x) = 1 for all χ ∈ Spec1/2(µT )

}
,

and note that U is a vector space isomorphic to the orthogonal complement of span(Spec1/2(1T )).

By Chang’s lemma (Corollary A.4), we have that

codimU = dim span(Spec1/2(1T ))

Chang
= O

(
log
|V |
|T |

)
= Oε(k

2(1 + logα−1
1 )(1 + logα−1

2 ))

= Oε((1 + logα−1)2(1 + logα−1
1 )(1 + logα−1

2 )).

Now, we compute the density increment on U . Writing f = µ∗kT ∗ (µA1 ? µA2)− µA1 ? µA2 for
shorthand, we have that

|(f ? 1S)(0)| ≤ ‖f ? 1S‖∞ = ‖f ∗ 1−S‖∞
Prop. 3.21
≤ ε,

so

((µ∗kT ∗ (µA1 ? µA2)) ? 1S)(0) = (f ? 1S)(0) + 〈µA1 ? µA2 ,1S〉 ≥ 1− 2ε.
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We have large correlation with 1S , which we would now like to convert into large correlation
with µA ? µA. By the definition of S, we have that

((µ∗kT ∗ (µA1 ? µA2)) ? (µA ? µA))(0) = E
y∈G

(µ∗kT ∗ (µA1 ? µA2)(y) · (µA ? µA)(y)

≥ E
y∈G

(µ∗kT ∗ (µA1 ? µA2)(y) · (1 + 4ε)1S(y)

= (1 + 4ε)((µ∗kT ∗ (µA1 ? µA2)) ? 1S)(0)

≥ (1 + 4ε)(1− 2ε)

= 1 + 2ε− 8ε2

> 1 + ε

as 0 < ε < 1/8. Let µ = (µ∗kT ∗ (µA1 ? µA2)) ? (µA ? µA) so that µ(0) > 1 + ε.
Next, we would like large cross-correlation on a structured subset—that is, to go from µ(0)

to µ(x). We have that |µ̂| = |µ̂T |k|µ̂A1 ||µ̂A2 ||µ̂A|
2, so for all x ∈ G, we have that

|µ(x)− µ(0)| =

∣∣∣∣∣∣
∑
χ∈Ĝ

µ̂(χ)(χ(x)− 1)

∣∣∣∣∣∣
≤
∑
χ∈Ĝ

|µ̂T (χ)|k|µ̂A1(χ)||µ̂A2(χ)||µ̂A(χ)|2 |χ(x)− 1| .

But observe that:

• if χ ∈ Spec1/2(µT ) and x ∈ U , then χ(x) = 1;

• if χ /∈ Spec1/2(µT ), then |µ̂T (χ)| < 1/2; and

• |µ̂A1(χ)| ≤ ‖µA1‖1 ≤ 1, and similarly |µ̂A2(χ)| ≤ 1.

It follows that for all x ∈ U , we have that

|µ(x)− µ(0)| ≤
∑

χ/∈Spec1/2(µT )

|µ̂A(χ)|2 · 2−k · 2

≤ 21−k‖µ̂A‖22
Parseval

= 21−k‖µA‖22
= 21−kα−1

≤ 1
2ε

by the choice of k.
Finally, we can aggregate this correlation and extract the desired terms. We have that

|(µU ? µ)(0)− µ(0)| =

∣∣∣∣∣E
y∈G

µU (y)(µ(y)− µ(0))

∣∣∣∣∣
≤ ‖µ− µ(0)‖L1(µU )

≤ ‖µ− µ(0)‖L∞(µU )

≤ 1
2ε,

so (µU ? µ)(0) > 1 + 1
2ε. But one can check that

µU ? µ = (µA ∗ µU ) ? ((µ∗kT ∗ (µA1 ? µA2)) ? µA),



SETS AVOIDING THREE-TERM ARITHMETIC PROGRESSIONS 21

so

‖µA ∗ µU‖∞ = ‖µA ∗ µU‖∞‖(µ
∗k
T ∗ (µA1 ? µA2)) ? µA‖1

Hölder
≥

〈
µA ∗ µU , (µ∗kT ∗ (µA1 ? µA2)) ? µA

〉
= (µU ? µ)(0)

> 1 + 1
2ε. �

Remark 3.22. Throughout the proof, we referred to correlation, i.e. 〈f, g〉, but required ex-
panding it as (f ? g)(0) for the technical computations.

3.3. Finishing the argument. Now that we have the steps of the density increment, it suffices
to put them together. We restate the aggregated result here for convenience.

Proposition 3.11. Let V be a finite-dimensional vector space over a field of prime order. Let
A ⊆ V have density α > 0. Suppose that

#{3-APs in A} ≤ 1
2α

3 |V |2 .

Then there exist a subspace U ≤ V of codimension O((1 + logα−1)6) and a t ∈ V such that

|(A− t) ∩ U |
|U |

≥ 129
128α.

Proof. By Remarks 3.4 and 3.5, we can replace the hypothesis with 〈µA ∗ µA, µ2·A〉 ≤ 1
2 and the

conclusion with ‖µA ∗ µU‖∞ ≥ 1 + 1
128 .

Apply Lemma 3.6 with ε = 1/2, Lemma 3.7 with ε = 1/4, Lemma 3.8 with p = dp′e (where p′

is obtained from Lemma 3.7) and ε = 1/8, and Lemma 3.10 with ε = 1/64. To get the desired
codimension bound, it suffices to note that the densities αi of the Ai produced by Lemma 3.8
satisfy logα−1

i = O((1 + logα−1)2). �

We now demonstrate how to prove the Kelley–Meka result in the finite field model with
c = 1/7 by iterating this density increment. First, we prove the counting result.

Proof of Theorem 3.2. Consider the following process:

(1) Initialise V0 = Fnq , A0 = A, αi = α, and i = 0.
(2) Assert that Ai ⊆ Vi ≤ Fnq .

(3) Set αi = |Ai+1|
|Vi+1| .

(4) If #{3-APs in Ai} > 1
2α

3
i |Vi|

2, then set m = i and STOP.
(5) Otherwise, by Proposition 3.11, there exists a subspace Ui ≤ Vi of codimension

O((1 + logα−1
i )6) and a ti ∈ Vi such that

|(Ai − ti) ∩ Ui|
|Ui|

≥ 129
128αi.

(6) Set Vi+1 = Ui and Ai+1 = (Ai − ti) ∩ Ui.
(7) Increment i and go back to step (2).

By construction, we have that:

• Fnq = V0 ≥ · · · ≥ Vm;

• #{3-APs in Am} > 1
2α

3
m |Vm|

2;

• the αi are increasing, so Vi+1 ≤ Vi has codimension O((1+ logα−1)6) and thus Vm ≤ Fnq
has codimension O(m(1 + logα−1)6);
• αm ≥

(
129
128

)m
α, so since αm ≤ 1, we have that m ≤ 200 logα−1 (in particular, the

process terminates); and
• Ai+1 ⊆ Ai − ti, so Am ⊆ A− t, where t = t0 + · · ·+ tm−1.
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The bound on m implies that Vm ≤ Fnq has codimension O((1 + logα−1)7), so

|Vm| ≥ qn−O((1+logα−1)7).

Then

#{3-APs in A} = #{3-APs in A− t}
≥ #{3-APs in Am}

> 1
2α

3
m |Vm|

2

≥ q−3(1+logα−1)q2n−O((1+logα−1)7)

= q2n−O((1+logα−1)7). �

Now, the extremal result is immediate.

Proof of Kelley–Meka in Fnq (Theorem 3.1). Suppose that A ⊆ Fnq of density α > 0 has no
nontrivial three-term arithmetic progressions. Then #{3-APs in A} = |A|. By Theorem 3.2,
we have that

1 ≥ α ≥ qn−O((1+logα−1)7).

Solving for α gives the desired bound. �

We have thus completed the proof of the Kelley–Meka result in the finite field setting.
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4. Integer setting

We now turn our attention to the main problem in the integer setting. All of the main ideas
will carry over, but as has been true for all previous quantitative bounds on r3(N) and r3(Fnq ),
the integer setting is filled with many more technicalities.

We recall the current state of results as stated in Section 1:

N/exp(O((logN)1/2))︸ ︷︷ ︸
Behrend

(best constants: Hunter)

. r3(N) . N/exp(Ω((logN)1/9))︸ ︷︷ ︸
BS

(KM method)

. N/(logN)1+c︸ ︷︷ ︸
BS

(previous best)

. N/log logN︸ ︷︷ ︸
Roth

.

As with the finite field model, it suffices to prove a counting result.

Theorem 4.1. Let A ⊆ {1, . . . , N} have size |A| = αN for some α > 0. Then

#{3-APs in A} ≥ N2/exp(O((1 + logα−1)9)).

4.1. Outline. The structure of the proof in the integer setting is essentially the same as in
the finite field model. The key difference is that we no longer have subspaces to work with in
G = Z/NZ. We instead turn to regular Bohr sets as described in Section 2.3, which provide
enough additive structure to be useful in the same sense.

Remark 4.2. Kelley and Meka’s original proof passed back and forth between Bohr sets and
generalised arithmetic progressions, which are sets of the form

{a0 + j1d1 + · · ·+ jrdr : ji ∈ {1, . . . , `i}}

for some a0, d1, . . . , dr ∈ G and `1, . . . , `r ∈ Z>0. One of Bloom and Sisask’s contributions
in their rephrasing was to clean this up by only staying within the world of Bohr sets, which
is possible because Bohr sets and generalised arithmetic progressions both play the role of an
“approximate subgroup” in the sense of additive structure.

We now provide an outline of the proof, with parallel steps to the finite field model proof.
While the proof follows the methodology of Kelley and Meka [KM23] with the rephrasing of
Bloom and Sisask [BS23b, BS23a], we differ from both of their presentations by breaking up
the key lemmas in precisely the same way as the finite field model to demonstrate the parallels
as clearly as possible.

Step 1: Lifting. The Hölder lifting step is similar to before, but a bit more general by counting

solutions to a linear equation in A × A × C rather than A3. It turns out that it will be easier
to narrow down to two different subsets of A when performing the density increment.

Lemma 4.3. Let 0 < ε < 1. Let B ⊆ G be a regular Bohr set of rank r and density β > 0, and
let A ⊆ B with relative density α > 0. Let B′ ⊆ B εα

4000r
be a regular Bohr set, and let C ⊆ B′

with relative density γ > 0. Suppose that

〈µA ∗ µA, µC〉 ≤ (1− ε)β−1

Then for any regular Bohr sets B′′, B′′′ ⊆ B′ 1
400r

, we have that

‖(µA − µB) ? (µA − µB)‖Lp(µ) ≥
1
2εβ
−1

for some p = O(1 + log γ−1), where µ = (µB′′ ? µB′′) ∗ (µB′′′ ? µB′′′).

Here, (µA − µB) ? (µA − µB) will play the role of µA ? µA − 1 from the finite field model.
Indeed, we can compute that

µA ? µA − 1 = (µA − 1) ? (µA − 1),

and we essentially use B = G (so that µB ≡ 1) in the finite field model.
The lifting lemma for the finite field model (Lemma 3.6) could also have been stated in

such generality, but this was not needed. The general version of that lemma is useful in other
problems though, such as in finding large arithmetic progressions in sumsets (see Section 5.3).
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Step 2: Unbalancing. Though we are using (µA − µB) ? (µA − µB) instead of µA ? µA − 1,
the correct function to “unbalance” to is still µA ? µA. The result is essentially the same as in
the finite field model.

Lemma 4.4. Let 0 < ε < 1. Let B ⊆ G be a regular Bohr set of rank r and density β > 0,
and let A ⊆ B with relative density α > 0. Let ν be a spectrally nonnegative probability measure
such that supp ν ⊆ B εα

4000r
. Suppose that

‖(µA − µB) ? (µA − µB)‖Lp(ν) ≥ εβ
−1

for some integer p ≥ 2. Then

‖µA ? µA‖Lp′ (ν) ≥ (1 + 1
4ε)β

−1

for some p′ = Oε(p).

Step 3: Correlation via dependent random choice. This correlation step requires us to
narrow down where A1 and A2 may lie. This will be useful when we apply the almost-periodicity
result over the integers. Note that the variable B′ is omitted from the statement as to be
consistent with other statements. The same will be true in Step 4.

Lemma 4.5. Let B,B′′, B′′′ ⊆ G such that B has density β > 0 and B′′, B′′′ are symmetric.
Let A ⊆ B with relative density α > 0. Suppose that

‖µA ? µA‖Lp(µ) ≥ (1 + ε)β−1

for some 0 < ε < 1 and integer p ≥ 1, where µ = (µB′′ ? µB′′) ∗ (µB′′′ ? µB′′′). Then there exist

d ∈ B′′ +B′′′ and sets A1 ⊆ B′′ and A2 ⊆ B′′′ − d of relative density Ω(α2p+Oε(1)) such that

〈µA1 ? µA2 ,1S〉 ≥ 1− 1
4ε,

where S = {µA ? µA > (1 + 1
2ε)β

−1}.

Step 4: Density increment via almost-periodicity. In the finite field model, the codi-
mension bound was crucial for keeping the size of the final subspace large. Here, we will
need something to keep the size of the final Bohr set large. To do this, we can appeal to the
Bohr set size bound (Lemma 2.7), which requires us to control the rank and radius. It is useful
to keep in mind that α1 and α2 will satisfy logα−1

i . (1 + logα−1)2 as before, so the bounds
really do turn out to be what we desire.

Lemma 4.6. Let r ≥ 1 be an integer. Let B,B′′, B′′′ ⊆ G be regular Bohr sets of rank r such
that B has density β > 0. Let A ⊆ B with relative density α > 0. Suppose that there exist
d ∈ G and sets A1 ⊆ B′′ of relative density α1 > 0 and A2 ⊆ B′′′ − d of relative density α2 > 0
such that

〈µA1 ? µA2 ,1S〉 ≥ 1− ε

for some 0 < ε < 1/16, where S ⊆ {µA ?µA ≥ (1 + 2ε)β−1} with |S| ≤ 2 |B′′|. Then there exists
a regular Bohr set B† ⊆ B′′′ of rank at most

r +Oε((1 + logα−1)2(1 + logα−1
1 )(1 + logα−1

2 ))

and radius at least

radius(B′′′) exp(−Oε(1 + logα−1 + log r + log(1 + logα−1
1 ) + log(1 + logα−1

2 )))

such that

‖µA ∗ µB†‖∞ ≥ (1 + 1
4ε)β

−1.
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Iterate. Now, all that is left to do is combine the steps of the density increment and iterate.

Proposition 4.7. Let r ≥ 1 be an integer. Let B ⊆ G be a regular Bohr set of rank r and
density β > 0, and let A ⊆ B with relative density α > 0. Let B′ = Bλ′ for some 0 < λ′ ≤ α

16000r
be a regular Bohr set (of rank r) and B′′ ⊆ B′ 1

400r

be a regular Bohr set of rank r. Let C ⊆ B′

with relative density γ > 0. Suppose that

#{(a1, a2, c) ∈ A×A× C : a1 + a2 = c} ≤ 3
4α

2β−1γ |G|2 .

Then there exists a regular Bohr set B† ⊆ B′′ such that:

• rank(B†) ≤ r +O((1 + logα−1)4(1 + log γ−1)2);
• radius(B†) ≥ radius(B′′) exp(−O((1 + logα−1 + log r + log(1 + log γ−1)))); and
• there exists t ∈ G such that ∣∣(A− t) ∩B†∣∣

|B†|
≥ 513

512α.

We warn the reader that the iteration argument is far more technical in the integer setting
than in the finite field model, due to the nature of Bohr sets. In Bloom and Sisask’s rephrasing
[BS23b], only Steps 3 and 4 were iterated, with other lemmas woven in between to complete
the argument. In this presentation, we instead choose to iterate the entire density increment
argument as to parallel the finite field model as much as possible.

4.2. Proof of density increment steps. We now prove the steps in the density increment for
the integer setting. Throughout, we take advantage of the fact that Bohr sets are symmetric,
and thus

(µB′′ ? µB′′) ∗ (µB′′′ ? µB′′′) = µB′′ ∗ µB′′ ∗ µB′′′ ∗ µB′′′

for Bohr sets B′′, B′′′.

Step 1: Lifting. To prove Lemma 4.3, we will once again use an estimate to go from convo-
lution to difference convolution. This time, we must switch measures due to using Bohr sets.

Lemma 4.8. Let B ⊆ G be a regular Bohr set of rank r, f : G → R, and p ≥ 1 be an even
integer. Then for any symmetric sets B′′, B′′′ ⊆ Bλ for some 0 < λ ≤ 1

400r , we have that

‖f ∗ f‖Lp(µB) ≤ 21/p ‖f ? f‖Lp(µ) ,

where µ = (µB′′ ? µB′′) ∗ (µB′′′ ? µB′′′).

Proof. We have that µ = µB′′ ∗ µB′′ ∗ µB′′′ ∗ µB′′′ is supported on B′′ +B′′ +B′′′ +B′′′ ⊆ 4Bλ.
So using the fact that p is even, we have that

‖f ∗ f‖pLp(µB) = EµB · (f ∗ f)p

Lem. 2.11
≤ 2E(µB1+4λ

∗ µ) · (f ∗ f)p

= 2 E
x∈G

(
E
y∈G

µB1+4λ
(y)µ(x− y)

)
(f ∗ f)(x)p

= 2E
y∈G

µB1+4λ
(y) E

x∈G
µ(x− y)(f ∗ f)(x)p

= 2 E
y∈B1+4λ

E
x∈G

µ(x− y)(f ∗ f)(x)p.
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Thus there exists y ∈ B1+4λ such that

‖f ∗ f‖pLp(µB) ≤ 2 E
x∈G

µ(x− y)(f ∗ f)(x)p

= 2 〈τ−yµ, (f ∗ f)p〉

Parseval
= 2

〈
χ(−y)µ̂, (f̂2)∗p

〉
.

But µ̂ = |µ̂B′′ |2|µ̂B′′′ |2 ≥ 0, so the triangle inequality implies that

‖f ∗ f‖pLp(µB) ≤ 2
〈
µ̂, (|f̂ |2)∗p

〉
Parseval

= 2 〈µ, (f ? f)p〉
= 2 ‖f ? f‖pLp(µ) . �

Proof of Lemma 4.3. Let f = µA − µB, and write

〈f ∗ f, µC〉 = 〈µA ∗ µA, µC〉 − 2 〈µA ∗ µB, µC〉+ 〈µB ∗ µB, µC〉 .

Using the fact that B is symmetric so µB ? µC = µB ∗ µC , we have that

〈µA ∗ µB, µC〉 = 〈µA, µB ? µC〉
= 〈µA, µB ∗ µC − µB〉+ ‖µB‖L1(µA)

= 〈µA, µB ∗ µC − µB〉+ β−1

since A ⊆ B. By Hölder’s inequality, we have that

|〈µA, µB ∗ µC − µB〉| ≤ ‖µA‖∞ ‖µB ∗ µC − µB‖1 = (αβ)−1 ‖µB ∗ µC − µB‖1 .

Since C ⊆ B′ ⊆ Bλ with λ = εα
4000r < 1, Lemma 2.9 implies that

‖µB ∗ µC − µB‖1 ≤ 200λr = 1
20εα.

It follows that

〈µA ∗ µB, µC〉 ≥
(
1− 1

20ε
)
β−1.

Similarly,

〈µB ∗ µB, µC〉 ≤
(
1 + 1

20εα
)
β−1 ≤

(
1 + 1

20ε
)
β−1.

Thus

〈f ∗ f, µC〉 ≤ (1− ε)β−1 − 2
(
1− 1

20ε
)
β−1 +

(
1 + 1

20ε
)
β−1 = −17

20εβ
−1.

Since C ⊆ B′ and 1B′ µC = γ−1µB′ 1C , we have that

〈f ∗ f, µC〉 = γ−1 〈f ∗ f,1C〉µB′ .

Let p = 2 + 2dlog γ−1e. Then

17
20γεβ

−1 ≤
∣∣∣〈f ∗ f,1C〉µB′ ∣∣∣

Hölder
≤ ‖f ∗ f‖Lp(µB′ )

‖1C‖Lp∗ (µB′ )

= ‖f ∗ f‖Lp(µB′ )
γ1/p∗ ,

where 1
p + 1

p∗ = 1. It follows that

‖f ∗ f‖Lp(µB′ )
≥ 17

20γ
1/pεβ−1 ≥ 21/p · 1

2εβ
−1

by the choice of p. The result follows from Lemma 4.8. �
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Step 2: Unbalancing. We have already done the bulk of the work for this step in the finite
field case, particularly in Lemma 3.13. The following lemma will help us break up the necessary
bound into pieces.

Lemma 4.9. Let B be a regular Bohr set of density β > 0, and let S ⊆ B with relative density
ω > 0. For all x ∈ Bλ for some 0 < λ < 1, we have that∣∣(µS ? µB)(x)− β−1

∣∣ ≤ 200(ωβ)−1λ rank(B).

Proof. Check that
(µS ? µB)(0) = ‖µB‖L1(µS) = β−1,

so we have that ∣∣(µS ? µB)(x)− β−1
∣∣ = |(µS ? µB)(x)− (µS ? µB)(0)|

= |(µS ? τxµB − µS ? µB)(0)|
= |〈µS , τxµB − µB〉|
Hölder
≤ ‖µS‖∞ ‖τxµB − µB‖1

= ω−1 ‖τxµB − µB‖1 .
But τxµB = µB ∗ µ{−x}, and −x ∈ Bλ by symmetry of Bohr sets, so we can apply Lemma 2.9
to µ{−x} to finish. �

Proof of Lemma 4.4. Let f = µA−µB and g = µA ? µA− f ? f = µA ? µB +µB ? µA−µB ? µB.
Apply Lemma 3.13 to βf ? f , which is spectrally nonnegative because its Fourier transform is

β|f̂ |2. Then ∥∥f ? f + β−1
∥∥
Lp′ (ν)

≥ (1 + 1
2ε)β

−1

for some p′ = Oε(p). It suffices to show that∥∥g − β−1
∥∥
Lp′ (ν)

≤ 1
4εβ
−1.

Let x ∈ supp ν ⊆ Bλ, where λ = εα
4000r < 1. Applying Lemma 4.9 with S = A gives that∣∣(µA ? µB)(x)− β−1

∣∣ ≤ 200(αβ)−1λr = 1
20εβ

−1.

Applying Lemma 4.9 with S = A and x replaced by −x gives that∣∣(µB ? µA)(x)− β−1
∣∣ ≤ 1

20εβ
−1.

Applying Lemma 4.9 with S = B gives that∣∣(µB ? µB)(x)− β−1
∣∣ ≤ 1

20αεβ
−1 ≤ 1

20εβ
−1.

It follows that ∣∣g(x)− β−1
∣∣ ≤ 3

20εβ
−1

for all x ∈ supp ν, so∥∥g − β−1
∥∥
Lp′ (ν)

≤
∥∥g − β−1

∥∥
L∞(ν)

≤ 3
20εβ

−1 < 1
4εβ
−1

as desired. �

Step 3: Correlation. Again, we have already done most of the work for this step in the finite
field case.

Proof of Lemma 4.5. We have that

E
s∈B′′

E
t∈B′′′

‖µA ? µA‖pLp(µB′′∗µB′′′+s+t)

= E
s∈G
E
t∈G

µB′′(s)µB′′′(t) E
x∈G
E
y∈G

µB′′(y)µB′′′+s+t(x− y)(µA ? µA)(x)p

= E
x∈G

E
(s,t,y)∈G3

µB′′(s)µB′′′(t)µB′′(y)µB′′′(x− y − s− t)(µA ? µA)(x)p.
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Since µ = µB′′ ∗ µB′′ ∗ µB′′′ ∗ µB′′′ , this is just ‖µA ? µA‖pLp(µ) ≥ ((1 + ε)β−1)p. It follows that

there exist s ∈ B′′ and t ∈ B′′′ such that

‖µA ? µA‖Lp(µB′′∗µB′′′+s+t)
≥ (1 + ε)β−1.

Let d = −s − t ∈ B′′ + B′′′. Apply Lemma 3.17 with B1 = B′′, B2 = B′′′ − d, ε replaced

by ε/3
1+ε , and δ replaced by 1

4ε; loosen the constraint in S to the desired size. Note that

µB1 ∗ µB2 = µB1 ? µB2 as B1 = B′′ is symmetric. The conclusion follows. �

Step 4: Density increment. For the integer setting, we will use the following strengthened
L∞-almost-periodicity result, which is essentially the same as a statement of Schoen and Sisask
[SS16, Theorem 5.1]. Again, this result alone is enough for Kelley and Meka’s original proof for
c = 1/12, but an improved bootstrap by Bloom and Sisask allows us to achieve c = 1/9.

Proposition 4.10. Let 0 < ε < 1, η > 0, K ≥ 2, and k ≥ 1 be an integer. Let A1, A2, B, S ⊆ G
be such that |A1| = η |S| and |A2 +B| ≤ K |A2|. There exist b ∈ B and T ⊆ B − b of relative
density at least

exp(−Oε(k2 max{log η−1, 1} logK))

such that
‖µ∗kT ∗ (µA1 ? µA2) ∗ 1S −(µA1 ? µA2) ∗ 1S‖∞ ≤ ε.

We defer the proof of this result to Appendix A.

Proof of Lemma 4.6. We will identify such a B† contained in B′′′κ ⊆ B′′′, where κ = λ
100r for

some 1
2 ≤ λ ≤ 1 chosen so that B′′′κ is regular (by Lemma 2.8).

Apply Proposition 4.10 with ε replaced by 1
3ε, η = |A1|

|S| , k = 4 + 2dlog ε−1e + 2dlogα−1e, B
replaced by B′′′κ , and S replaced by −S. We can take K = 2α−1

2 because∣∣A2 +B′′′κ
∣∣ ≤ ∣∣B′′′ − d+B′′′κ

∣∣ ≤ ∣∣B′′′1+κ

∣∣ reg.
≤ (1 + λ)

∣∣B′′′∣∣ ≤ 2α−1
2 |A2| .

Note that η−1 ≤ 2|B′′|
|A1| = 2α−1

1 , so log η−1 . 1 + logα−1
1 . Also logK . 1 + logα−1

2 . Then by

Proposition 4.10, there exist b ∈ B′′′κ and T ⊆ B′′′κ − b of relative density ω satisfying

logω−1 .ε (1 + logα−1)2(1 + logα−1
1 )(1 + logα−1

2 )

such that ‖f ∗ 1−S‖∞ ≤
1
3ε, where f = µ∗kT ∗ (µA1 ? µA2)− µA1 ? µA2 .

Apply Sanders’ local version of Chang’s lemma (Lemma A.5) with δ = 1
8εα, λ replaced by

1/2, B replaced by B′′′κ , and Y = T + b. Then there exists a Bohr set B† ⊆ B′′′κ of rank

rank(B†) ≤ rank(B′′′κ ) +O(1 + logω−1)

. r +Oε((1 + logα−1)2(1 + logα−1
1 )(1 + logα−1

2 ))

and radius satisfying

radius(B†) &
radius(B′′′κ ) · 1

8εα

rank(B′′′κ )2(1 + logω−1)

&
r−1 radius(B′′′)εα

r2(1 + logα−1)2(1 + logα−1
1 )(1 + logα−1

2 )

& radius(B′′′) exp(−Oε(1 + logα−1 + log r + log(1 + logα−1
1 ) + log(1 + logα−1

2 )))

such that |1− χ(x)| ≤ 1
8εα for all χ ∈ Spec1/2(µT+b) = Spec1/2(µT ) and x ∈ B†.

The density increment is computed in essentially the same manner as in the finite field model.
We skip computations that are identical to the finite field case. We have that(

(µ∗kT ∗ (µA1 ? µA2)) ? (1S)
)

(0) ≥ 〈µA1 ? µA2 ,1S〉 − ‖f ∗ 1−S‖ ≥ 1− 4
3ε.

Letting µ = (µ∗kT ∗ (µA1 ? µA2)) ? (µA ? µA), this implies that

µ(0) ≥ (1 + 2ε)(1− 4
3ε)β

−1 > (1 + 1
2ε)β

−1.
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For all x ∈ G, we have that

|µ(x)− µ(0)| =

∣∣∣∣∣∣
∑
χ∈Ĝ

µ̂(χ)(χ(x)− 1)

∣∣∣∣∣∣
≤
∑
χ∈Ĝ

|µ̂T (χ)|k|µ̂A1(χ)||µ̂A2(χ)||µ̂A(χ)|2 |χ(x)− 1| .

But observe that:

• if χ ∈ Spec1/2(µT ) and x ∈ B†, then |1− χ(x)| ≤ 1
8εα;

• if χ /∈ Spec1/2(µT ), then |µ̂T (χ)| < 1/2; and

• |µ̂A1(χ)| ≤ ‖µA1‖1 ≤ 1, and similarly |µ̂A2(χ)| ≤ 1 and |µ̂T (χ)| ≤ 1.

In particular, |µ̂T (χ)|k |χ(x)− 1| ≤ 1
8εα + 2−k · 2 for all x ∈ B†. It follows that for all x ∈ B†,

we have that

|µ(x)− µ(0)| ≤
∑
χ∈Ĝ

|µ̂A(χ)|2 · (1
8εα+ 2−k · 2)

Parseval
= (1

8εα+ 21−k)‖µA‖22
= (1

8εα+ 21−k)(αβ)−1

≤ 1
4εβ
−1

by the choice of k. Then we have that

(µB† ? µ)(0) ≥ µ(0)− ‖µ− µ(0)‖L∞(µ
B† )

> (1 + 1
2εβ
−1)− 1

4εβ
−1,

so

‖µA ∗ µB†‖∞
Hölder
≥ (µB† ? µ)(0) > (1 + 1

4εβ
−1). �

4.3. Finishing the argument. We must now tie together the steps of the density increment.
We restate the boost here for convenience. The proof is more involved than the simple combi-
nation that took place in the finite field model.

Proposition 4.7. Let r ≥ 1 be an integer. Let B ⊆ G be a regular Bohr set of rank r and
density β > 0, and let A ⊆ B with relative density α > 0. Let B′ = Bλ′ for some 0 < λ′ ≤ α

16000r
be a regular Bohr set (of rank r) and B′′ ⊆ B′ 1

400r

be a regular Bohr set of rank r. Let C ⊆ B′

with relative density γ > 0. Suppose that

#{(a1, a2, c) ∈ A×A× C : a1 + a2 = c} ≤ 3
4α

2β−1γ |G|2 .

Then there exists a regular Bohr set B† ⊆ B′′ such that:

• rank(B†) ≤ r +O((1 + logα−1)4(1 + log γ−1)2);
• radius(B†) ≥ radius(B′′) exp(−O((1 + logα−1 + log r + log(1 + log γ−1)))); and
• there exists t ∈ G such that ∣∣(A− t) ∩B†∣∣

|B†|
≥ 513

512α.

Proof. By a similar calculation to Remark 3.4, the hypothesis is equivalent to

〈µA ∗ µA, µC〉 ≤ 3
4β
−1.

Let B′′′ = B′′ 1
400r

be a regular Bohr set (of rank r). Let µ = (µB′′ ? µB′′) ∗ (µB′′′ ? µB′′′).

Step 1: Apply Lemma 4.3 with ε = 1/4 to deduce that

‖(µA − µB) ? (µA − µB)‖Lp(µ) ≥
1
8β
−1

for some p = O(1 + log γ−1).
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Step 2: We wish to apply Lemma 4.4 with ν = µ. We have that µ̂ = |µ̂B′′ |2|µ̂B′′′ |2 ≥ 0. In
addition,

suppµ = B′′ +B′′ +B′′′ +B′′′ ⊆ 4B′′ ⊆ 4B′λ′′ ⊆ B′4λ′′ = B4λ′λ′′

with 4λ′λ′′ ≤ α
1600000r2

< α/8
4000r . So we can apply Lemma 4.4 with ε = 1/8 and ν = µ to deduce

that

‖µA ? µA‖Lp′ (µ) ≥ (1 + 1
32)β−1

for some p′ = O(1 + log γ−1).
Step 3: Apply Lemma 4.5 with ε = 1/32 and p replaced by dp′e. We get that there exist

d ∈ B′′+B′′′ and sets A1 ⊆ B′′ of relative density α1 = Ω(α2p+O(1)) and A2 ⊆ B′′′−d of relative

density α2 = Ω(α2p+O(1)) such that

〈µA1 ? µA2 ,1S〉 ≥ 1− 1
128 ,

where S = {µA ? µA > (1 + 1
64)β−1}.

Step 4: We wish to apply Lemma 4.6, but there is a size restriction on S. We can massage our
S by taking S̃ = S ∩ (A2 −A1). Indeed, µA1 ? µA2 is supported on A2 −A1, so the correlations
〈µA1 ? µA2 ,1S〉 and

〈
µA1 ? µA2 ,1S̃

〉
are the same. As for the size restriction, check that

|S̃| ≤ |A2 −A1| ≤
∣∣B′′′ − d−B′′∣∣ =

∣∣B′′ +B′′′
∣∣ ≤ ∣∣∣B′′1+ 1

100r

∣∣∣ reg.
≤ 2

∣∣B′′∣∣
as desired. So we can apply Lemma 4.6 with ε = 1/128 and S replaced by S̃ to produce a
regular Bohr set B† ⊆ B′′′ such that

‖µA ∗ µB†‖∞ ≥ (1 + 1
512)β−1.

Using the fact that logα−1
i . (1 + logα−1)(1 + log γ−1), this Bohr set B† has the correct rank.

It also has the correct radius with radius(B′′′) in place of radius(B′′). But

radius(B′′′) =
1

400r
radius(B′′) = radius(B′′) exp(−O(1 + log r)),

so the radius bound is also correct. And clearly B† ⊆ B′′′ ⊆ B′′.
In the same manner as Remark 3.5, this implies the desired conclusion. �

Given this boost, we demonstrate how to prove the upper bound on r3(N) by iterating this
density increment. First, we prove the counting result that a subset of {1, . . . , N} of size αN
contains N2/exp(O((1 + logα−1)9)) three-term arithmetic progressions. The iteration is far
more technical than in the finite field model.

Proof of Theorem 4.1. Embed A into G = Z/(2N + 1)Z, noting that arithmetic progressions in
{1, . . . , N} ⊆ G correspond to those in {1, . . . , N} ⊆ Z. Replace α with the density of A in G,
which is fine for the desired bound as it only affects α by a factor of at most 3.

Consider the following process:

(1) Initialise B(0) = G, A0 = A, and i = 0.
(2) Assert that B(i) ⊆ G is a regular Bohr set and Ai ⊆ B(i).
(3) Set the following:

• αi = |Ai|
|B(i)| ;

• ri = rank(B(i));

• B(i) = (B(i))λi , where λi = ciαi
ri

for some 1
221
≤ ci ≤ 1

220
so that B(i) is regular;

• βi =
|B(i)|
|G| ;

• B′(i) = (B(i))λ′i , where λ′i =
c′iαi
ri

for some 1
215
≤ c′i ≤ 1

214
so that B′(i) is regular; and

• B′′(i) = (B′(i))λ′′i , where λ′′i =
c′′i αi
ri

for some 1
211
≤ c′′i ≤ 1

210
so that B′′(i) is regular.



SETS AVOIDING THREE-TERM ARITHMETIC PROGRESSIONS 31

(4) If there exists ti ∈ G such that∣∣(Ai − ti) ∩B(i)

∣∣∣∣B(i)

∣∣ ≥ (1 + 1
2048)αi,

then set Ai+1 = (Ai − ti) ∩B(i) and B(i+1) = B(i). Increment i and go back to step (2).
(5) If there exists ti ∈ G such that∣∣∣(Ai − ti) ∩B′(i)∣∣∣∣∣∣B′(i)∣∣∣ ≥ (1 + 1

2048)αi,

then set Ai+1 = (Ai − ti) ∩B′(i) and B(i+1) = B′(i). Increment i and go back to step (2).

(6) Otherwise, apply Bourgain’s narrowing trick (Lemma 2.10) with B replaced by B(i), A

replaced by Ai, ε replaced by 1
1024 , B1 replaced by B(i), and B2 replaced by B′(i). These

parameters are valid by the bounds on the constant ci. Then we are in the second
alternative, so there exists di ∈ G such that∣∣(Ai − di) ∩B(i)

∣∣∣∣B(i)

∣∣ ≥ (1− 1
1024)αi and

∣∣∣(Ai − di) ∩B′(i)∣∣∣∣∣∣B′(i)∣∣∣ ≥ (1− 1
1024)αi.

Let Ãi = (Ai− di)∩B(i) and Ã′i = (Ai− di)∩B′(i) so that Ãi ⊆ B(i) and Ã′i ⊆ B′(i) both

have relative density at least 1023
1024αi.

(7) If

#
{

(x, y, z) ∈ Ãi × Ã′i × Ãi : x+ z = 2y
}
> 3

4β
−1
i

|Ãi|
2|Ã′i|
|G|

,

set m = i and STOP.
(8) Otherwise, apply Proposition 4.7 with B replaced by B(i), A replaced by Ãi, B

′ replaced

by B′(i), B
′′ replaced by 2 · B′′(i), and C replaced by 2 · Ã′i. Note that α is replaced by

a density that is at least 1023
1024αi. These parameters are valid by the bounds on the

constants c′i, c
′′
i and observing that 2 · B′′(i) = 2 · (B′(i))λ′′i ⊆ (B′(i))2λ′′i

. Then there exists

a regular Bohr set B† ⊆ 2 ·B′′(i) such that:

• rank(B†) ≤ ri +O((1 + logα−1
i )6);

• radius(B†) ≥ radius(2 ·B′′(i)) exp(−O(1 + logα−1
i + log ri)); and

• there exists d′i ∈ G such that

|(Ãi − d′i) ∩B†|
|B†|

≥ 513
512 ·

1023
1024αi ≥ (1 + 1

2048)αi.

(9) Set Ai+1 = (Ãi − d′i) ∩B† and B(i+1) = B†.
(10) Increment i and go back to step (2).

Now, we analyze the procedure. The only way to terminate is at step (7). At this point, we
have accumulated m density increments of the form αi+1 ≥ (1 + 1

2048)αi, so m . logα−1. At

each step, the rank either stays the same or is increased by O((1+logα−1
i )6) ≤ O((1+logα−1)6),

so

rank(B(m)) ≤ rank(B(0)) +O(m(1 + logα−1)6)

. (1 + logα−1)7.

We also have the same bound on ri for any i ≤ m.
Recall that radius(2 ·B′′(i)) = radius(B′′(i)). Note that

radius(B(i)) = Ω(αi/ri) radius(B(i)) = radius(B(i)) exp(−O(1 + logα−1
i + log ri))
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and similarly with the other Bohr sets, so it is always true that

radius(B(i+1)) ≥ radius(B(i)) exp(−Oε,δ(1 + logα−1
i + log ri))

≥ radius(B(i)) exp(−Oε,δ(1 + logα−1)).

Thus

radius(B(m)) ≥ radius(B(0)) exp(−O(m(1 + logα−1)))

≥ exp(−O((1 + logα−1)2)).

It follows by the Bohr set size bound (Lemma 2.7) that∣∣B(m)

∣∣ ≥ |G| exp(−O((1 + logα−1)9)).

Now, we take into account the termination condition in step (7). Since Ãi and Ã′i are subsets
of the same translate of A, the left-hand side is at most the number of solutions to x+ z = 2y
in A. Thus it suffices to compute the right-hand side. We have

|Ãm| = |Ãm|
|B(m)| ·

|B(m)|
|B(m)| ·

∣∣B(m)

∣∣ .
The first term satisfies

|Ãm|
|B(m)| ≥

1023
1024αm ≥ exp(−O(1 + logα−1)).

The second term satisfies

|B(m)|
|B(m)|

Lem. 2.7
≥ (λm/4)rm ≥ (Ω(α/rm))rm ≥ exp(−O((1 + logα−1)8)).

This means that the
∣∣B(m)

∣∣ term is the main term, so

|Ãm| ≥ |G| exp(−O((1 + logα−1)9)).

A similar conclusion is reached for A′′m, so

#{3-APs in A} > |G|2 exp(−O((1 + logα−1)9))

≥ N2/exp(O((1 + logα−1)9)). �

As with the finite field model, the extremal result is immediate.

Proof of Kelley–Meka (Theorem 1.2). Suppose that A ⊆ {1, . . . , N} with size |A| = αN has no
nontrivial three-term arithmetic progressions. Then #{3-APs in A} = |A|. By Theorem 4.1,
we have that

1 ≥ α ≥ N/exp(O((1 + logα−1)9)).

Solving for α gives the desired bound. �

This concludes the proof of the current best upper bound on r3(N), provided by Bloom and
Sisask using the Kelley–Meka method.
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5. Related problems

There are numerous extensions to the problem posed by Roth’s theorem.

5.1. Szemerédi’s theorem. Perhaps the most obvious extension is to ask to forbid k-term
arithmetic progressions for arbitrary fixed k ≥ 3. To that end, let rk(N) denote the maximum
size of a subset of {1, . . . , N} with no nontrivial k-term arithmetic progression. Then Roth’s
theorem generalises to Szemerédi’s theorem [Sze75].

Theorem 5.1 (Szemerédi). For any fixed integer k ≥ 3, we have that rk(N) = ok(N).

Szemerédi’s original proof relied on his powerful regularity lemma which provides tremendous
structural results but has terrible quantitative bounds. For example, Szemerédi’s proof gives
that r3(N) ≤ N/(log∗N)c for some c > 0, where log∗ denotes the iterated logarithm—and
larger k only get worse along the Ackermann hierarchy.

In a breakthrough, Gowers [Gow01] improved the upper bound to rk(N) ≤ N/(log logN)ck

for ck = 2−2k+9
by introducing higher order Fourier analysis in order to parallel the Fourier-

analytic proof of Roth’s theorem. For arbitrary k, this was not improved until very recently,
when Leng, Sah, and Sawhney proved quasi-polynomial bounds on the inverse theorem for the
Gowers Uk+1-norm [LSS24b] and applied this to prove an upper bound of

rk(N) ≤ N/exp((log logN)ck)

for some effective constant ck > 0 [LSS24a]. This Leng–Sah–Sawhney upper bound is the current
best for any k ≥ 5. For k = 4, Green and Tao [GT17] previously proved that r4(N) . N/(logN)c

for some effective constant c > 0.
There is still a substantial gap between the upper and lower bounds for Szemerédi’s theorem,

as the current best lower bound for rk(N) is of a similar quasi-polynomial shape as the Behrend
lower bound, provided by O’Bryant [O’B11]:

rk(N) & N(logN)Ok(1)/exp(Ok((logN)Ok(1))),

where each of the Ok terms have effective implicit constants.
As with the three-term arithmetic progression case, breaking the logarithmic barrier in the

denominator would provide more cases of the conjecture of Erdős that sets of positive integers
with divergent reciprocal sum must contain arbitrarily long arithmetic progressions.

It is worth noting that the extremal problem for k-term arithmetic progressions in the finite
field model is still wide open. Recall that r3(Fnq ) has been bounded between two nontrivial
exponentials for all odd primes q, so the shape of the bounds is correct. Let rk(Fnq ) denote
the analogous quantity for k-term arithmetic progressions over Fnq (for q large enough so that
modular arithmetic constraints do not affect such progressions). The current best upper bound
for k = 4 is due to Green and Tao [GT09, GT12], similar to their bound in the integers:
r4(Fnq ) . qn/nc for c = 2−22.

5.2. Corners. A closely related object to arithmetic progressions is the corner, i.e. a set of
the form {(x, y), (x, y + d), (x + d, y)}. Let rx(N) denote the maximum size of a subset of
{1, . . . , N}2 with no nontrivial corners. One reason that corners are relevant when discussing
Roth’s theorem is the relation between avoiding corners and avoiding three-term arithmetic
progressions.

Lemma 5.2. We have that r3(N) ≤ rx(2N)
N .

Proof. Suppose A ⊆ {1, . . . , N} contains no nontrivial three-term arithmetic progressions. Con-
sider the set {(x, y) ∈ {1, . . . , 2N} : x− y ∈ A}. This set has at least |A|N elements, namely
(y + a, y) for a ∈ A, y ∈ {1, . . . , N}. But it is corner-free: if (x, y), (x, y + d), (x+ d, y) were all
in the set with d 6= 0, then x−y−d, x−y, x−y+d would be a nontrivial three-term arithmetic
progression in A. Thus |A|N ≤ rx(2N). Taking the maximum over all such A finishes. �

In a similar result to Theorem 5.1, Ajtai and Szemerédi [AS74] proved the following.

Theorem 5.3. We have that rx(N) = o(N2).



34 SETS AVOIDING THREE-TERM ARITHMETIC PROGRESSIONS

The original proof used Szemerédi’s theorem as a black box, though a much simpler proof
was given by Solymosi [Sol03] by invoking the triangle removal lemma that follows from the
regularity lemma. As previously mentioned, quantitative bounds for the regularity lemma and
the triangle removal lemma are quite poor, so alternate methods must be used to produce a
better upper bound. Indeed, Shkredov [Shk05] applied a density increment argument using
the box norm to prove a much better bound of rx(N) . N2/(log logN)c for c = 1/73. Lower
bounds for rx(N) also follow Behrend-type quasi-polynomial densities, with the current best
constants coming from Green [Gre21].

In the finite field model, there is a similar situation as to k-term arithmetic progressions: the
upper bound is polylogarithmic due to Lacey and McClain [LM07], while the lower bound is
exponential due to Christandl, Fawzi, Ta, and Zuiddam [CFTZ22]. However, the situation is
actually more dire. While the Croot–Lev–Pach polynomial method has some hope of achieving
exponential savings in large arithmetic progressions, a result of Christandl, Fawzi, Ta, and
Zuiddam [CFTZ22, Theorem 8] shows that existing tensor-based methods (including the slice
rank method, which is a reformulation of the Croot–Lev–Pach polynomial method) cannot
provide good upper bounds on corner-free sets in Fnq .

Beyond corners, various multidimensional shapes have similar extremal questions. One par-
ticularly interesting shape is the skew corner, i.e. a set of the form {(x, y), (x, y+d), (x+d, y′)}.
In a quick success of the Kelley–Meka method, Milićević [Mil24] and Jaber, Lovett, and Ostuni
[JLO24] independently applied the method to prove a quasi-polynomial shape upper bound on
the size of sets with no nontrivial skew corners. As with three-term arithmetic progressions,
this matches the best lower bound of Beker [Bek24] up to the power of the logN term in the
exponent. There is good reason to believe that the Kelley–Meka method will be successful in
improving upper bounds in many other similar settings.

5.3. Sumsets containing arithmetic progressions. In their original paper, Kelley and
Meka [KM23] also applied their method to find large structured subspaces in A + A + A for
A ⊆ Fnq . With the reformulation of Bloom and Sisask in terms of only Bohr sets, a similar
result [BS23a, Theorem 3] is able to be proven in the integers.

Theorem 5.4. Let A ⊆ {1, . . . , N} have size |A| = αN for some α > 0. Then A + A + A
contains an arithmetic progression of length at least

exp(−O((1 + logα−1)2))NΩ((1+logα−1)−7).

The proof of this theorem follows the exact same steps as the proof of Theorem 1.2, but with
different parameters. This narrows the gap on this problem in a similar fashion to the bounds
on r3(N): the previous best lower bound due to Sanders [San08] had exponent α1+o(1), while
the current best construction due to Freiman, Halberstam, and Ruzsa [FHR92] gives a lower
bound with exponent O((1 + logα−1)−1).

5.4. Back to Roth’s theorem. Turning our attention back to the problem of three-term
arithmetic progressions, there is still much work to be done. Closing the gap on the power of
the logN term in the exponent is an enticing open problem. Bloom and Sisask suggest that
c = 1/7 is the limit of this technique without substantially new ideas—indeed, the rank bound
in Lemma 4.6 necessarily carries a logα−1

1 and logα−1
2 term, and as previously discussed, each

of those contributes 2 to the exponent of the logα−1 term. Thus the best bound we could hope
for is on the order of (1 + logα−1)4, which would give c = 1/7.

Whether other methods may be applicable is also unclear—perhaps a revolutionary technique
similar to the polynomial method is needed to improve the bounds further. Regardless, the
innovative method of Kelley and Meka has proven to be extremely powerful in advancing the
state of knowledge in additive combinatorics, centered on three-term arithmetic progressions
but sure to be widely applicable elsewhere in the field.
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Appendix A. Almost-periodicity

In this appendix, we derive the almost-periodicity result needed for the Kelley–Meka method
from the original Croot–Sisask almost-periodicity and provide statements of related results. We
will use the following statement of Croot–Sisask almost-periodicity [CS10] as stated and proven
by Sanders [San12b, Lemma 4.3].

Theorem A.1 (Croot–Sisask almost-periodicity). Let 0 < ε < 1, p ≥ 2, and K ≥ 2. Let
A,B ⊆ G be such that |A+B| ≤ K |A|. Let f : G→ C. Then there exist b ∈ B and T ⊆ B − b
of relative density at least exp(−O(ε−2p logK)) such that

‖τt(µA ∗ f)− µA ∗ f‖p ≤ ε ‖f‖p
for all t ∈ T .

We can aggregate the results for each of the almost-periods to tack on an additional convo-
lution factor.

Corollary A.2. Let 0 < ε < 1, p ≥ 2, K ≥ 2, and k ≥ 1 be an integer. Let A,B ⊆ G be such
that |A+B| ≤ K |A|. Let f : G→ C. Then there exist b ∈ B and T ⊆ B − b of relative density
at least exp(−O(k2ε−2p logK)) such that

‖µ∗kT ∗ µA ∗ f − µA ∗ f‖p ≤ ε‖f‖p.

Proof. Apply Theorem A.1 with ε replaced by 1
k ε. Then there exist b ∈ B and T ⊆ B − b of

relative density at least exp(−O(k2ε−2p logK)) such that

‖τt(µA ∗ f)− µA ∗ f‖p ≤
1
k ε ‖f‖p

for all t ∈ T . Since shifting a function does not change its Lp-norm, the triangle inequality
implies that ∥∥τ−(t1+···+tk)(µA ∗ f)− µA ∗ f

∥∥
p
≤ ε ‖f‖p

for all t1, . . . , tk ∈ T .
Let µ = µ∗kT and g = µA ∗ f . Then with 1

p + 1
p∗ = 1, we have that

‖µ ∗ g − g‖p =

(
E
x∈G

∣∣∣∣∣Ey µ(y)(g(x− y)− g(x))

∣∣∣∣∣
p) 1

p

=

(
E
x∈G

∣∣∣〈1, g(x− · )− g(x)〉µ
∣∣∣p) 1

p

Hölder
≤

(
E
x∈G
‖1‖p

Lp∗ (µ)
‖g(x− · )− g(x)‖pLp(µ)

) 1
p

=

(
E
x∈G

(
E
y∈G

µ(y) |g(x− y)− g(x)|p
)) 1

p

=

(
E
y∈G

µ(y)

(
E
x∈G
|g(x− y)− g(x)|p

)) 1
p

≤ max
y∈suppµ

‖τ−yg − g‖p .

But suppµ = kT , so this is bounded by ε ‖f‖p as desired. �

From this version of Lp-almost-periodicity, the L∞-almost-periodicity results that are needed
for the Kelley–Meka method are immediate. We restate the more general result here for conve-
nience.
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Proposition 4.10. Let 0 < ε < 1, η > 0, K ≥ 2, and k ≥ 1 be an integer. Let A1, A2, B, S ⊆ G
be such that |A1| = η |S| and |A2 +B| ≤ K |A2|. There exist b ∈ B and T ⊆ B − b of relative
density at least

exp(−Oε(k2 max{log η−1, 1} logK))

such that
‖µ∗kT ∗ (µA1 ? µA2) ∗ 1S −(µA1 ? µA2) ∗ 1S‖∞ ≤ ε.

Proof of Propositions 4.10 and 3.21. Observe that µ−A1 ∗µA2 = µA1 ?µA2 . Apply Corollary A.2
with ε replaced by 1

2ε, p = max{log2(η−1), 2}, A = A2, and f = 1S . Then for all t ∈ T , Young’s

convolution inequality with 1
p + 1

p∗ = 1 implies that

‖µ∗kT ∗ µ−A1 ∗ µA2 ∗ 1S −µ−A1 ∗ µA2 ∗ 1S‖∞
Young
≤ ‖µ∗kT ∗ µA2 ∗ 1S −µA2 ∗ 1S‖p‖µ−A1‖p∗

Cor. A.2
≤ 1

2ε

(
|S|
|G|

) 1
p
(
|R|
|G|

) 1
p∗−1

= 1
2εη
−1/p

≤ ε
by choice of p. This gives Proposition 4.10.

Now Proposition 3.21 follows by taking η = α1
|G|
|S| ≥ α1, K = max{α−1

2 , 2}, and B = G. �

A.1. Chang’s lemma. Chang’s lemma is a powerful tool often used in combination with
almost-periodicity results to gain additional structure in a bootstrapping procedure. We list
some versions of Chang’s lemma here without proof.

We say that S ⊆ G is dissociated if for all (εs)s∈S ∈ {−1, 0, 1}S , we have that∑
s∈S

εss = 0 ⇐⇒ εs = 0 for all s ∈ S.

By applying probabilistic tools, one can show Chang’s lemma [Cha02, Lemma 3.1].

Lemma A.3 (Chang). Let A ⊆ G have density α > 0, and let 0 < λ ≤ 1. If Λ ⊆ Specλ(1A) is
dissociated, then |Λ| = O(λ−2 logα−1).

As a corollary, we have the following formulation stated by Tao and Vu [TV06, Lemma 4.36].

Corollary A.4. Let A ⊆ G have density α > 0, and let 0 < λ ≤ 1. Then for some

d = O(λ−2 logα−1), there exist χ1, . . . , χd ∈ Ĝ such that

Specλ(1A) ⊆

{
d∑
i=1

εiχi : εi ∈ {−1, 0, 1}

}
.

In particular, if G = V is a finite field vector space, then

dim span(Specλ(1A)) = O(λ−2 logα−1).

In a similar vein, one can prove the following “local version” of Chang’s lemma for Bohr sets,
due to Sanders [San08, Proposition 4.2].

Lemma A.5 (Chang–Sanders). Let 0 < δ, λ < 1. Let B = Bohr(Γ, ρ) ⊆ G be a regular Bohr

set, and let Y ⊆ B with relative density ω. There exist Λ ⊆ Ĝ of size at most O(λ−2(1+logω−1))
and ρ′ < ρ at least

Ω

(
λ2ρδ

rank(B)2(1 + logω−1)

)
such that |1− χ(x)| ≤ δ for all χ ∈ Specλ(µY ) and x ∈ Bohr(Γ ∪ Λ, ρ′) ⊆ B.
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finite field geometries, Proc. Lond. Math. Soc. (3) 98 (2009), no. 2, 365–392.
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